
Submitted to:
WACA 2025

© E. Truyen & W. Joosen
This work is licensed under the
Creative Commons Attribution License.

Optimal configuration of API resources in cloud native
computing

Eddy Truyen Wouter Joosen
DistriNet, KU Leuven, Leuven, Belgium

Eddy.Truyen@kuleuven.be Wouter.Joosen@kuleuven.be

This paper presents how an existing framework for offline performance optimization can be applied
to microservice applications during the Release phase of the DevOps life cycle. Optimization of
resource allocation during the Release phase remains a largely unexplored problem as most research
has focused on intelligent scheduling and autoscaling of microservices in the production environ-
ment. Yet horizontal auto-scaling of containers, based on CPU usage for instance, may still leave
these containers with an inappropriately configured amount of memory, if no upfront fine-tuning
of both resources is applied. We evaluate the framework using the TeaStore microservice applica-
tion and statistically compare different optimization algorithms, supporting informed decisions about
their trade-offs between sampling cost and distance to the most optimal configuration. This shows
that upfront screening for reducing the search space is helpful when the goal is to find the optimal
resource configuration as found in exhaustive search. When the goal is to statistically compare dif-
ferent algorithms with respect to the optimal configuration, screening must also be applied to make
data collection of all data points in the search space feasible. If the goal is to find a near-optimal
configuration within a limited sampling budget, it is better to run bayesian optimization without
screening.

1 Introduction

Modern software is increasingly developed with cloud-native deployment in mind, driving a shift from
monolithic architectures toward distributed systems composed of containerized microservices. These
services are typically deployed on elastic platforms such as container orchestration (CO) systems [20],
with Kubernetes being the most prominent example. Containerization supports DevOps practices and
continuous integration/deployment (CI/CD), enabling rapid release cycles and agile iteration [2]. One
key advantage of CO platforms is their ability to define fine-grained resource allocations—such as CPU
and memory—on a per-container basis [30]. These resource decisions have a direct impact on application
performance metrics (e.g., tail latency or throughput), which are typically governed by strict service-level
objectives (SLOs) [3, 33].

Accurately translating high-level SLOs into efficient container resource configurations has been a hot
topic of research in the past decade. Most CO platforms require manual translation, often leading to sub-
optimal outcomes like over-provisioning and underutilization of resources, which increases costs [30].
Case studies show significant inefficiencies, such as T-Mobile’s containers having only 5.15% memory
utilization [22], and most jobs in production clusters being over-provisioned [16]. The complexity of
modern microservice stacks makes manual tuning slow and error-prone, often taking weeks [23], which
doesn’t fit with fast release cycles. Non surprisingly, a mass of work has been done on the use of machine
learning and optimization to improve the performance efficiency of containers [40].

However, most of this research has tackled the operational phases of DevOps lifecyle, thus neglecting
the development phases [26]. The operational stage includes deploying a application in a production

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Optimal configuration of API resources in cloud native computing

environment and scheduling its containers to the most appropriate computing nodes, monitoring their
resource usage and SLO compliance of the application, and if needed to horizontally or vertically scale
some of their containers. It is also important to choose the right initial amounts of resources for containers
even when auto-scaling is applied. While horizontal or vertical auto-scaling tactics do improve the
overall utilization of the provisioned containers, these solutions do not entail a complete solution for
the cost-optimal management of SLOs. Horizontal auto-scaling based on CPU thresholds may still
lead to containers being over- or under-provisioned in terms of memory, i.e., there should be a balance
between memory and CPU resource allocation. This problem also remains when auto-scaling is based
on multiple metrics such as the memory usage or CPU usage as scaling is still performed when either
one of these metrics crosses a threshold. Similarly, vertical auto-scaling [31], while adjusting CPU
and memory resources for each container, can cause container restarts, which may result in service
disruptions and increased latency. Finally, auto-scalers are applied per microservice and therefore do not
take dependencies between microservices into account. Off-line optimization can configure microservice
applications as a whole by employing end-to-end user scenarios for performance testing.

Therefore, we have been working in the past on a optimizer framework, named k8-resource-optimizer,
that targets the Release phase of the DevOps cycle, before the application is deployed in a production en-
vironment [17, 25]. In particular, k8-resource-optimizer is an existing framework for offline performance
optimization of containerized multi-tenant applications deployed on Kubernetes (K8s), the de-facto stan-
dard for container orchestration. The framework can also be extended with new types of workloads and
optimization goals for these workloads as well as different optimization algorithms. Once these plugin
components are developed, the user needs to provide minimal input: the workload intensity, the SLO
to be met, and the set of tunable resource parameters. Last but not least, framework can be used to
fine-tune any resource parameter that is configurable via the K8s API, thus supporting also performance
optimization of string-based application configuration parameters of microservices themselves.

In this paper, we make the following contributions:
• We apply k8-resource-optimizer to offline resource optimization of a microservice-based applica-

tion deployed on container orchestration platforms.

• We demonstrate that k8-resource-optimizer can statistically compare different optimization algo-
rithms to understand their trade-off between sampling cost and distance to most optimal resource
configuration.

• We investigate the relevance of upfront screening for reducing the search space so that optimization
algorithms have a higher probability to find the most optimal configuration or to find a near-optimal
configuration with a limited sampling budget.

Overview of the paper. The paper is organized as follows. Section 2 presents the background to under-
stand the remainder of this paper. Subsequently, Section 3 describes the architecture and implementation
of k8-resource-optimizer. Then, Section 4 evaluates the framework in the context of the TeaStore mi-
croservice application. Next, Section 5 discusses the lessons learned and the usefulness of k8-resource-
optimizer for optimization of application configuration parameters of microservices. Thereafter, Sec-
tion 6 describes the related work on off-line performance optimization in cloud-native computing. Fi-
nally, Section 7 presents our conclusions and directions of future work.

2 Background

This section presents the overall approach behind performance optimization and introduces screening
and specific optimization algorithms that are evaluated in the paper.

E. Truyen & W. Joosen 3

2.1 Performance optimization

In performance optimization, the goal is to find an optimum of an utility function f : X →R by iteratively
sampling values of f (x) in order to find a global optimum of xopt ∈ X . If evaluation of f (x) is expensive,
the search for the global optimum should be done efficiently in terms of the number of evaluations.
Several optimization algorithms have been suggested to guide this search such as Bayesian optimization,
simulated annealing, and genetic algorithms [4]. These algorithms typically make trade-offs between
the exploration of the search space and exploitation of insights in already sampled regions to guide the
selection of the next sample.

In what follows, we formalize the performance optimization problem for a given containerized mi-
croservice application as: For a workload W , find the optimal or a near-optimal resource configuration
C∗(⃗x) that satisfies the SLOs of given SLA s and minimizes the operational cost P(⃗x). We use x⃗ to denote
the selected parameter settings of a configuration C, where x⃗ includes resources settings (CPU, RAM,
disk I/O, network bandwidth) for each of microservices part of the applications. Let SLI(⃗x), Service
Level Indicator [3], be the actual measurements of the performance test for settings x⃗. Since, the defini-
tion for an optimal configuration depends heavily on the application context, we allow for a user-defined
utility function with configuration settings x⃗ and SLI(⃗x) as input parameters. Our goal is two-fold: Firstly,
to find the configuration C∗ with utility score u∗ which has the smallest possible distance to the most op-
timal configuration CW for the given workload. The distance between CW and C∗ is expressed as the
absolute value the difference in utility |u∗− uW |. Secondly, the time to find an optimal configuration is
limited. Therefore, the search should be performed within a limited amount of performance test samples.

2.2 Factor screening

The size of the search space is determined by the search ranges for each parameter [min,max]. How-
ever, as developers might be clueless on resource requirements of their services, this search-space may
contain regions that are incapable of even remotely satisfying the SLO, and as such exploration of these
regions would be pointless. Therefore it makes sense to reduce the full parameter space to a sub-area that
has a high probability to contain the optimal resource configuration and that has a smooth performance
surface. We assume that this allows off-the-shelf optimization algorithms to perform much better. With
this end in view, it is possible to run k8-resource-optimizer with a factor screening/sensitivity analysis
algorithm that relies on calculating Elementary Effects (EE) as implemented by Morris One-At-a-Time
(MOAT) [27]. The MOAT algorithm discovers for a given function which inputs have a substantial
influence on the outputs. When applied to performance optimization, the function maps the resource
parameters of the search space to attained Service Level Indicators (SLIs) such as latency and through-
put, and the algorithm works as follows. The k-dimensional search-space (for k resource parameters), is
partitioned in p uniform levels for each parameter, resulting in a pk grid of possible settings. The method
iteratively evaluates configurations in the search-space, starting from a random point in the grid. During
each iteration, one resource parameter xi is altered at a time in a discrete parameter space while fixing
the other parameters. As such, a trajectory is created in the search-space of k+1 evaluations. Altering
parameter xi in consecutive evaluations allows to calculate the elementary effect (EE) of that parameter,
EEi =

y(x1,...,xi+∆,...,xk)−y(x1,...,xi,...,xk)
∆

, where y(x) is based on the Service Level Indicators (SLIs) obtained
from the evaluations. We use ∆= p

2(p−1) , leading to steps slightly larger than half the range of the normal-
ized parameter range between [0,1], as recommended by [32]. Repeating the process for r trajectories
with r being between 5 to 15 (i.e., a total of r∗(k+1) evaluations), allows for the calculation of the mean
µi, modified mean µ∗

i (which are the absolute values of EEi) and standard deviation σi of each parameter

4 Optimal configuration of API resources in cloud native computing

xi. The mean and modified mean express the overall influence of a configuration parameter on the SLIs,
and standard deviation indicates dependence on other parameter settings [32]. Based upon the results of
the screening algorithm, the parameter search ranges are adapted as follows: (i) the MIN setting is set
to the minimum setting tested capable of satisfying a more relaxed SLI (e.g., a tail-latency that is 40%
slower than the targeted SLI), (ii) the size of the search-space is set in accordance to the impact of (µ∗

i ,
σi) of the parameter compared to other parameters.

2.3 Optimization algorithms

Bayesian optimization (BO) [34] has become a popular technique to solve optimization problems. It
sequentially models the utility function as a stochastic process with configuration settings as input pa-
rameters. First, the configuration-vs-utility space is modeled by regressing a set of prior sample points
(configurations already evaluated). This allows to create an estimate of the entire search-space, BO
calculates a confidence interval of the utility function. This model is then sequentially refined by the ad-
dition of samples via Bayesian posterior updating. The next sample point is selected using a predefined
acquisition function. This function aims to balance exploitation (i.e., regions with a high probability of
containing an optimum) and exploration (i.e., regions with high uncertainty). We selected the popular
Expected Improvement (EI) function for this task, as it has shown promising results in similar con-
texts [1, 23] and it does not require tuning of its own parameters [35]. BO’s sequential approach is
suitable for scenarios where the evaluation of a single data point is a time-consuming task [23], hence it
is a suitable approach for our use-case.
BestConfig [41] explores the search-space by iterations of their proposed divide-and-diverge (DDS)
sampling method and recursive bound-and-search (RBS) algorithm. DDS is a form of stratified sampling
to achieve a wide coverage of the search-space (exploration). Based on the results of samples proposed
by DDS, RBS either narrows the search-space near high-achieving samples (exploitation) or backtracks
to avoid local optimums.

3 Framework

In this section, we present the command line interface, architecture and implementation of the k8-
resource-optimizer framework.

3.1 Command line interface

To optimize the deployment of a containerized microservice-based application on K8s, k8-resource-
optimizer relies on two key inputs: (1) a helm chart that defines the base deployment including all K8s
manifests; more specifically a values.yaml file inside the helm chart defines all the customizable K8s
resource parameters and default values for these parameters, and (2) an optimizer configuration file that
specifies the service-level objectives (SLOs), and the parameter search space for tunable parameters
of the Helm chart. In particular the optimizer configuration specifies one or more SLAs where each
SLA presents a specific helm chart with a specific application. When more SLAs are specified, their
corresponding applications are expected to be co-located on the same K8s cluster. Each SLA defines the
following items:

• The name of the helm chart that should be used for deploying the application.

• One or multiple SLOs such as throughput or latency.

E. Truyen & W. Joosen 5

Figure 1: The architecture of k8-resource-optimizer.

• The expected workload intensity in terms of the number of concurrently running tenants and the
expected throughput per tenant.

• A set of tunable parameters for each microservice that have to be defined upfront in the values.yaml
file of the referenced helm chart. For each tunable parameter, a search range is defined (min, max,
and granularity) and unit suffixes (e.g., m for millicores, Mi for mebibytes).

Next an optimization strategy is included which consists of the following items:

• nbOfIterations and nbOfSamplesPerIteration, which control the search budget,

• namespaceStrategy (e.g., NSPSLA or NSPT) to determine if the application is multi-tenant or
needs to be launched separately for each tenant.

• optimizer (e.g., MOAT, bestconfig) which selects the underlying optimization algorithm,

• utilFunc, a utility function used to evaluate the performance efficiency of each configuration.

An example values.yaml file and optimizer configuration file for the TeaStore application are pre-
sented in Appendix A and B, respectively. K8-resource optimizer can also be used for optimization of
any other resource parameter in the K8s API. For example, configuration parameters of the microservices
can be optimized by making each parameter templatable in the Helm chart. This is a matter of including
a variable for it in the values.yaml file. String based parameters should be converted in the helm chart
to an Integer range with a granularity of 1. An example of the latter is shown in Appendix C.

Finally, a benchmark scenario is to be implemented when running k8-resource-optimizer by instan-
tiating the Experiment interface. For microservice applications, we target an end-to-end user scenario
where a user sequentially invokes multiple operations of the microservice application to simulate a full
user journey. Such end-to-end user scenario is preferred as the basis of performance testing during opti-
mization as this implicitly accounts for the dependencies between different microservices and optimizes
the application as a whole instead of optimizing each microservice individually.

3.2 Architecture

The architecture of k8-resource-optimizer is illustrated in Figure 1 and is composed of loosely coupled
components interacting via common interfaces. The data-flow between these components during opti-
mization is given in Algorithm 1.

6 Optimal configuration of API resources in cloud native computing

⇒ 1 load optimizer configuration and performance test;
for iteration do

2 ask Optimizer for next configuration C(⃗x) to sample;
3 deploy application with resource parameter settings of x⃗;
4 wait for application to be marked ready;
5 obtain SLI1(⃗(x)), SLI2⃗(x)), ..., SLIn(⃗(x)) from performance test;
6 feed results to Optimizer;

end
⇐ (near)-optimal configuration

Algorithm 1: Iteration loop of k8-resource-optimizer

Optimizer The optimizer provides a reusable interface suitable for most optimization algorithms based
upon exploration and exploitation. The predefined utility function interface, described in Section 2.1, al-
lows the combination of any optimization algorithm and user-defined utility function.

Deployment Manager Responsible for the deployment of a particular helm chart and values.yaml file
inside a K8s cluster. K8-resource-optimizer leverages K8s’ readiness probes, to ensure that the appli-
cation is fully deployed before running a performance test and retries a failed installation/removal of
deployments.

Load generation In order to support a variety of load-generation frameworks (e.g., Locust, JMeter,
Vegeta), k8-resource-optimizer provides an interface for experiments to be run as a performance test.
Currently, the popular load-generation framework Locust [11] is integrated.

3.3 Implementation

The core framework without plug-in components has been implemented using the Go programming lan-
guage in 1.5K lines of code. To extend the k8-resource optimizer with a benchmark scenario and utility
function for the TeaStore application, we need to implement an Experiment class and an UtilityFunction
that together require 302 lines of code. We have implemented 11 different optimization algorithms in-
cluding bayesian optimization, BestConfig, MOAT, as well as random search and an exhaustive search
algorithm in 2.9K lines of code. Finally, we also developed 1K lines of code for static analysis of the
performance of different optimizations techniques to understand the optimality versus the search cost
ratio of the these techniques.

3.4 Setting workload intensity and resource parameter conversion

As stated in Section 3.1, k8-resource-optimizer requires manual specification of the workload intensity
as well as the parameters to be optimized and their conversion to K8s API resources.

The workload intensity is specified in terms of the number of concurrent tenants and a request or
job arrival rate per tenant. How to set the workload intensity depends on the expected workload fluctu-
ation pattern, i.e., bursty, monotonically increasing, seasonal and stable [28, 24]. For stable and bursty
workloads, the workload intensity should be set slightly larger than the constant workload volume of the

E. Truyen & W. Joosen 7

stable workload and set equal to the highest expected peak for the bursty workload. For monotonic and
seasonal workloads, one should set the highest expected workload intensity.

The conversion of parameters to K8s API resources relies heavily on the scripting facilities of helm
charts. The values.yaml file of a helm chart typically specifies for each container one parameter per
resource type and a parameter for the number of container replicas (cfr. Appendix A). The K8s yaml

files in the helm chart then convert these parameters to K8s API resources as follows.
Resource parameters in the values.yaml file must be converted to the K8s API request and limit

entries. The request entry specifies the amount of node resources that should be available to the con-
tainer, while the limit field sets the maximally allowed resource usage of the container. Both parameters
are enforced by the operating system of the node [6].

In our experience, the resource parameters should be directly copied into the limit entry. The
request entry’s values are set equal to or a certain percentage lower than those of the limit entry [6,
38]. For stable workloads, this percentage will be smaller than for bursty workloads; if the application
concerns a high-priority workload, however, requests must be equal to limits.

Moreover, in stable or bursty workloads, the number of container replicas is fixed and typically set
higher than 1 to ensure availability of the microservices. For monotonic and seasonal workloads, the
number of microservice replicas is to be included as a tunable parameter in the optimizer configuration
file of k8-resource-optimizer, and resource parameters are to be converted as in bursty workloads. The
optimal number of replicas found should then be set as the maximum number of replicas in auto-scaling
solutions.

4 Evaluation

In this section, we illustrate the workflow of k8-resource-optimizer for TeaStore [19], a popular refer-
ence microservice application for performance evaluation of research prototypes. Thereafter we evaluate
the usefulness of factor screening and compare the cost-effectiveness of the different optimization algo-
rithms.

First, the experimental settings are explained in Section 4.1. Then factor screening is illustrated
in Section 4.2, providing insights into the obtained reduced search-spaces for TeaStore v1.2.0. Next,
Section 4.3 shows the results of the exhaustive data collection process after factor screening, while Sec-
tion 4.5 evaluates to which extent the different optimization algorithms can find the optimal configuration
as found by the exhaustive search, and Section 4.4 compares the cost-effectiveness of different algorithms
with respect to the trade-off between search cost and distance of a found near-optimal configuration to
the optimal one. Subsequently, Section 4.6 evaluates the usefulness of factor screening. Finally Section
4.7 evaluates the effective resource utilization of TeaStore as achieved by k8-resource-optimizer, hereby
pointing to a few oversights in the overall workflow.

4.1 Experimental environment

This section provides a detailed description of the experimental environment and the configuration bench-
mark scenario used when running k8-resource-optimizer for TeaStore.

Infrastructure. Our testbed consisted of a private OpenStack cloud. The physical machines of this
cloud come with 2.60 GHz Intel Xeon E5-2660 processors and 128GB DDR3 memory. The Kubernetes
(v1.14) cluster consists of two nodes, master and worker, running on top of Ubuntu 16.04 VMs. The

8 Optimal configuration of API resources in cloud native computing

master has 4 CPU cores and 8GB of RAM and the worker node has 8 CPU cores and 16GB of RAM.
These nodes are actually VMs that run on the same physical machine but CPU pinning is enabled to
minimize performance interference. As such, physical CPU cores are exclusively reserved for a single
VM and all virtual CPUs of a VM map to CPU cores that belong to the same motherboard socket.

Microservice application. TeaStore [19] is a microservice application developed as a reference appli-
cation for performance testing. It offers deployment specifications for multiple CO platforms where each
microservice is deployed in its own container.

Benchmark scenario and workload intensity For TeaStore, a number of requests are sequentially
invoked as follows: login� get categories� view products in a category� add product to cart� view
profile� logout. The full benchmark scenario is presented in Appendix D.

As workload intensity we let 10 concurrently running tenants execute the benchmark scenario. We
assume a stable workload without bursts and therefore set the K8s resource requests equal to K8s resource
limits. The tested SLO in the evaluation concerns the 99th percentile latency of separate requests, which
is set at 1000 ms.

Utility function In our experiments we use the following utility function,

u(⃗x) =

{
1+(SLI(⃗x)−SLO) if SLI(⃗x)> SLO
normP(⃗x) otherwise

where normP(⃗x) equals to the normalized resource allocation cost of x⃗. This utility function assigns
a configuration that violates the SLO a score larger than 1 depending on the distance between the 99th
percentile of the SLI and the SLO. It assigns configurations that satisfy the SLO a score between [0,1),
but discards their observed SLI in preference for resource allocation. The SLO-satisfying configuration
with the lower resource allocation cost receives a lower score. The goal is to minimize this score.

Optimization algorithms For the implementation of Bayesian optimization (BO) we rely on a popu-
lar open-source Python library [29]. Here, the corresponding BO plugin maintains and communicates
with a running process of the library. The library’s specific implementation treats the search space as
continuous. In our use-case, however, parameters have a certain granularity (e.g., 125 Mil), resulting in
a discrete search space. Our optimization algorithm therefore, translates the suggested samples by the
BO to the nearest discrete settings. For BestConfig’s optimization algorithm and the factor screening
algorithm MOAT, we implemented the algorithms as described in their respective papers. Other baseline
optimization algorithms are random search and incremental random search (RandomInc). It is an opti-
mizer that shuffles the order of parameters randomly, and then systematically iterates over all possible
configurations built incrementally based on that shuffled parameter order. In practice, it generates all
configurations but only tests a subset, depending on sampling budget, meaning it is not truly exhaustive
unless allowed to complete.

4.2 Factor screening

The first step of k8-resource-optimizer’s methodology uses MOAT (cfr. Section 2.2) to determine rea-
sonable parameter ranges and hereby reducing the search space before employing the optimization al-
gorithms. The initial bounds for the parameter ranges for CPU and memory are set the same for all the

E. Truyen & W. Joosen 9

TeaStore

SLO - 99th prctl latency
relaxed/target/strict (ms)

1250/1000/750

SLO - workload intensity
(# concurrent tenants)

10

Initial CPU bounds (millicore) [500, 1125]
Initial Mem bounds (Mi) [512, 1152]
Initial search space (configs) 614

Reduced search space (configs) 2048
Sample time (min) 10

Table 1: Initial search spaces, reduced search
spaces and sample time of applications.

Parameter σ µ∗ min max

TeaStore
webuiCpu 919 1755 625 750
registryCpu 352 243 500 625
dbMemory 278 230 512 640
imageCpu 278 175 500 500
persistenceMemory 354 242 512 512
dbCpu 436 302 500 625
authCpu 257 225 500 625
authMemory 410 250 512 512
persistenceCpu 498 360 500 625
recommenderCpu 577 345 500 625
recommenderMemory 234 128 512 512
registryMemory 457 313 512 512
imageMemory 354 203 512 640
webuiMemory 291 148 512 512

Table 2: Results of the factor screening for TeaS-
tore include the modified mean µ∗ and the devia-
tion σ of 99th percentile latency. [min, max] are
the newly selected parameter search spaces after
factor screening.

TeaStore microservices. A minimum bound has been set by starting from the maximum bound and in-
creasingly decreasing it with a granularity of 125 millicores for CPU resources and with a granularity of
128 Mi for memory resources, until the application does not start-up successfully. This results in a search
space of 614 possible configurations for TeaStore’s 14 parameters, with each parameter having 6 possible
settings. We run MOAT with 10 trajectories resulting in 150 configurations to be evaluated for TeaStore
v1.2.0. The results of the factor screening algorithm are listed in Table 2 and the 99th percentile latency
of the samples is plotted in Figure 2. It is clear from Table 2 that some parameters have a larger impact
on the 99th percentile latency, i.e., those with a higher µ∗ and σ values. Figure 2 shows the clear impact
of configuration settings on the observed latency. However, subsequent points are also often clustered
indicating that some parameter changes have a minimal effect on the observed latency. As explained
in Section 2.2, the new mini is set to the lowest parameter value of xi achieving a less strict SLO (see
Table 2). The maxi is based on the maximum parameter value of xi that achieves a stricter SLO and the
relative impact of (µ∗,σ). These new settings are also shown in Table 2. For TeaStore, the search space
is reduced to 2048 configurations, pointing to a enormous reduction factor of 107.

4.3 Exhaustive data collection

The methodology for comparing the different optimization algorithms entails to exhaustively evaluate
all configurations of the reduced search space that resulted from factor screening, and to store the eval-
uations in a persistent dataset to be leveraged for effective comparison of the optimization algorithms.
A similar approach for evaluation of optimization algorithms has been used for optimization of storage
solutions [4]. Figure 3 shows the 99th percentile latency CDF among all configurations for TeaStore.
The measured 99th percentile latency values vary across a wide range. Some configurations experience
twice the desired SLO. For TeaStore, merely 11% of the 2048 configurations is capable of satisfying the
SLO. This shows that even after factor screening, the search space is still large enough to be explored by
the optimization algorithms.

10 Optimal configuration of API resources in cloud native computing

TeaStore

Config #
0 60 120

99
th

 la
te

nc
y

(m
s)

1000

2000

3000

SLO

Figure 2: 99th percentile latency for
all configurations evaluated during
factor screening.

TeaStore CDF

Percentage of configurations
0 30 60 90

99
th

 L
at

en
cy

 (m
s)

0

1000

2000

CDF
SLO

Figure 3: 99th percentile latency
CDF of exhaustive search space.

4.4 Reaching the most optimal

As described in Section 2.3, we employ optimization techniques to guide our search in a cost-effective
manner (i.e, the number of required performance tests). Here, we focus particularly on 1) Bayesian-
optimization (BO) with expected improvement (EI) 2) BestConfig’s optimization algorithm 3) Random
Search, which performs random selection 4) Random search with increment (randomInc) which iterates
over possible configurations with a randomly selected sequence of parameters (see Section 4.1 for more
information on their implementation).

The selected optimization algorithms rely on random exploration to get good coverage of the search
space. To account for this randomness in the evaluation, we collected 1,000 runs for each algorithm.
Figure 4 shows the results of 1,000 runs on the dataset of each algorithm for TeaStore. The Y-axis
indicates the percentage of runs that have found the most-optimal configuration (this value is known
from the exhaustive search). The number of samples (or iterations of the algorithm) is limited to 100 for
TeaStore. As such, the algorithms can effectively sample ≈5% of the search space. For all algorithms,
it is clearly shown that the more samples are collected, the more runs find the optimal configuration.
However, they differ significantly in their efficacy and speed. For both applications, BO with EI performs
the best with more than 80% of the runs finding the most optimal configuration within a limited number
of samples. BestConfig and Random search rarely succeed in finding the most optimal solution.

4.5 Reaching the near-optimal the most quickly

The previous section evaluated the capacity of the optimization algorithms to find the optimal configu-
ration as found by exhaustive search. In practice, however, near-optimal configurations that satisfy the
SLO with reasonable cost reduction are equally desirable. The goal is to offer guidance to select the most
effective algorithm given an available sampling cost. In addition, because all algorithms have a random
element, it is better to compare the worst performing run of the algorithms. Figure 5 shows the 99th
percentile distance to the most-optimal configuration for the 1,000 simulated runs for each algorithm.
The purple dashes indicate the distance between the utility score (1.0) at which the SLO is satisfied (as
expressed by the employed utility function) and the most optimal configuration as found by exhaustive

E. Truyen & W. Joosen 11

Teastore

Samples
0 30 60 90

pe
rc

en
ta

ge
 o

f r
un

s

0

40

80

randominc
random
bestconfig
bayesianEI

Figure 4: Comparing the efficacy of
implemented optimization algorithms in
finding the most optimal configuration
in the reduced search space. The Y-
axis shows the percentage of 1,000 runs
that found the most optimal configuration
within a certain amount of a samples (X-
axis).

Teastore

Samples
0 30 60 90

99
th

 p
er

ce
nt

ile
 d

is
ta

nc
e

to
 o

pt
im

um

0

1

2
randominc

random
bestconfig

bayesianEI
SLO

Figure 5: Comparing the worst-case effi-
cacy of optimization methods in finding
the near-optimal configurations in the re-
duced search space. The Y-axis shows the
99th percentile (99% of the runs find sim-
ilar or better configurations) of the dis-
tance to the optimal configuration.

search.
The results show that BO with EI is the most cost-effective in finding a near-optimal configuration,

but BestConfig and random search are also still cost-effective in finding such configurations. RandomInc
does not always find a configuration that meets the SLO because by keeping the order of parameters after
shuffling fixed, it may not find such a solution after 100 samples.

4.6 Evaluation of factor screening

Factor creening is set at 150 samples. This is an significant cost. The question arises whether applying
the algorithms on the full parameter space without screening would have resulted in finding the optimal
configuration faster or even finding a more optimal configuration than found by the exhaustive search
within the bounds set of the screening algorithm. To answer this question, we ran the Bayesian Opti-
mization (BO) algorithm at 150 samples on the complete search space for TeaStore before screening (cfr.
the initial bounds set in Table 1). Figure 6 shows the results. The red box represents the search space
selected by the screening method, with the most expensive configuration in the top red corner. The red
dot shows the best result found when combining factor screening and BO, the blue dots indicate the best-
found configurations by running BO on the complete search space without factor screening. This shows
that standalone BO can find near-optimal solutions as well using the same cost as the screening cost.
Thus it can find near-optimal solutions faster than when combining BO and screening, which supports
more efficient performance optimization during the Release phase of the DevOps lifecycle, where rapid
and accurate resource tuning is critical.

However, combining factor screening and BO hugely increases the probability to find the optimal

12 Optimal configuration of API resources in cloud native computing

Memory

C
PU Complete

Reduced

Figure 6: Results of stand-alone BO compared to combining factor screening and BO for TeaStore.
The red box represents the reduced search space determined by the factor screening method. Green dot
indicates the best result when combining screening and BO. Blue dots are the best found configurations
by BO.

configuration, while this is not the case when running BO stand-alone. As such we conclude that factor
screening remain advisable for finding the optimal configuration without caring for the sampling cost.

Of course, factor screening is also required for reducing the effort to statistically compare multiple
optimization algorithms (cfr. Section 4.4). This enables fast, automated comparison of optimization
strategies, which aligns with the need for efficient tooling in DevOps. Indeed, factor screening drastically
reduces the search space, making it feasible to collect samples for all data points in limited amount of
time, which is valuable during the Release phase where time constraints often limit the feasibility of
full search strategies. Thereafter each algorithm can be evaluated very quickly by running k8-resource-
optimizer from the collected dataset multiple times. Repeating 1000 runs takes about 6 minutes on
average. Still, sequentially collecting all 2048 samples took more than 14 days. We also applied factor
screening for TeaStore version 1.3.0 and this reduced the search space to 128 samples, requiring a full
day (see Table 3 for a break-down of the durations).

Sample Screening (150 samples) Exhaustive 1000 optimization runs

TeaStore v1.2 10 min 25 hours 14.2 days 7 min
TeaStore v1.3 10 min 25 hours 21.5 hours 5 min

Table 3: Break down duration cost.

4.7 Resource utilization

Figure 7 illustrates the resource utilization of the resource configurations that have been found by the
worst-case run of the most cost-effective algorithm after the maximum amount of samples. This resource
utilization has been measured using K8s’ Heapster monitoring service [7]. In the case of TeaStore, a mix
of high and low utilization of resources between the different services is observed. The reasons for this
is twofold: firstly, the application’s bottlenecks are located at the heavily utilized Authentication and
WebUI service. Secondly, other services such as the Recommendation, Registry and Database services
experience a low degree of utilization in terms of CPU despite although the configuration selected the

E. Truyen & W. Joosen 13

lowest possible CPU setting for these settings. This is because a higher amount of CPU is needed for
starting up the Java-based services, but once the microservices are started up, the CPU usage tends to be
lower. Unfortunately, at the time of the research, in K8s v1.14, it is not possible to resize the resources
of containers without restarting these containers, which limits flexibility during the Release phase, when
rapid adjustments with minimal disruption are crucial. But this feature is now in alpha development [36].
K8s-resource optimizer could therefore be extended so that two CPU parameters are optimized, one for
starting the containers and when one warmed up and processing workload.

Setting minimal bounds is a tricky problem as a too high minimal bound may exclude the optimal
configuration. This is illustrated by the low memory usage of the database component. We made the
wrong assumption that the database service also ran on Tomcat but it does not. Therefore, instead of
setting the same minimal bound for all microservices (cfr. Table 1), we should have tested the minimal
bound for each microservice separately.

TeaStore

Auth Recommender DB Image Persistence WebUi Registry

U
til

iz
at

io
n

0

50

100 CPU
MEM

Figure 7: Worst case utilization of separate microservices after optimization.

5 Towards optimization of application-specific configurations

The evaluation results in Sections 4.6 and 4.7 demonstrate the practicality of using k8-resource-optimizer
during the Release phase of the DevOps lifecycle to discover cost-efficient resource configurations for
attaining performance SLOs of microservices. A key takeaway is that standalone Bayesian Optimization
(BO) can be highly effective in identifying near-optimal configurations with the same sampling cost as
the screening algorithm. However, when the objective shifts to finding the optimal configuration with
higher certainty, or enabling statistical comparisons across optimizers, factor screening remains essential
despite its upfront cost.

As discussed in Section 1, k8-resource-optimizer is not restricted to container-level resource param-
eters but any parameter that is configurable via the K8s API. Section 3.1 further explained how such
application-level parameters can be included in the optimizer’s search space via Helm chart templating.
By representing them as variables in the values.yaml file, developers can explore a much broader con-
figuration space. This enables optimization not just of infrastructure-level settings, but also of functional
choices that may significantly affect cost-performance trade-offs.

Application-specific configurations of microservices can thus also be included in the search space.
Examples of such application-specific configurations include feature toggles such as switching from
high power mode to low power mode in case of resource contention. K8-resource optimizer can detect

14 Optimal configuration of API resources in cloud native computing

performance invariants for such feature toggles during the release phase. For example, the following per-
formance invariant can be directly obtained from k8-resource optimizer: high power mode of a microser-
vice only attains the desired SLO when CPU allocation is higher than 750 millicores. This invariant can
then be enforced at deployment time by either ensuring at least 750 millicores during deployment or by
starting the microservice in low power mode.

K8-resource optimizer can also be used to better understand the performance efficiency of different
alternative features. However, this increased flexibility poses challenges. The inclusion of application-
specific parameters increases the dimensionality of the search space, making techniques like factor
screening more valuable for pruning irrelevant parameters. Moreover, interactions between resource
settings and application configurations may create complex dependencies that require joint consideration
during optimization.

6 Related work

This section presents existing work in the area of performance optimization during the development stage
of the DevOps life cycle. We refer the reader for an overview of performance optimization during the
operational stage to existing surveys [40, 26].
Performance modeling. Previous work has proposed several methods based on performance model-
ing of microservice applications [18, 15]. The performance model estimates the resources required for
an SLO or the maximum request rate without violating the SLO. Performance models can either be
constructed using queuing theory [5] or via various supervised machine learning techniques such as
neural networks or state vector machines [21]. The quality of the queuing model or machine learning
model relies heavily on the expertise of the application development team. In opposition, extending k8-
resource optimizer for another microservice application requires implementing an end-to-end benchmark
scenario, an implementation of an appropriate utility function, and the definition of an optimizer config-
uration file that is based on the values.yaml file of the helm chart of the application. The sampling cost
of 150 performance tests for factor screening or optimization is in line with the profiling/training cost
of the performance modeling approaches. K8-resource optimizer also allows comparing different opti-
mization algorithms with respect to finding the most optimal configuration or reaching a near-optimal
configuration fast enough.
Performance optimization for best VM instance selection. The closed work to ours are studies on the
selection of VM instances to achieve performance SLOs while minimizing costs. Ernest [37] can select
VM sizes within a given instance family for various machine learning applications by training a common
performance model with a small number of samples. The internal performance model exploits known
patterns in ML applications making it poorly adaptive for other types of applications. CherryPick [1]
utilizes Naive Bayesian optimization to find optimal or near-optimal VM instances for recurring big data
analytics jobs. Arrow [12] introduces Augmented Bayesian Optimization which modifies off-the-shelf
BO by integrating low-level performance information (e.g., CPU utilization or work memory allocation)
and design choices, allowing for more informed decision making. Scout [14] leverages historical data
from the optimization process and low-level performance metrics resulting in a more efficient search.
Micky [13] bundles several of the above techniques in a collective optimizer to further reduce measure-
ment costs.

There are clear analogies between k8-resource-optimizer and selecting the cost-optimal VM-instance
for an application. Our work deals however with a more complex configuration search space. Moreover
k8-resource-optimizer is also more reusable as it can work with, and compare different optimization

E. Truyen & W. Joosen 15

techniques. In opposition, the above works have only focused on Bayesian optimization or very similar
search strategies.

Performance optimization of program configuration parameters is an active research domain. Best-
Config [41] tunes general systems with high-dimensional parameter spaces using a recursive search with
stratified sampling. Similarly, Latin Hypercube Sampling (LHS) and smart hill climbing have been used
to tune an application server [39]. BOAT [8] utilizes structured Bayesian optimization while leveraging
contextual information to automatically tune application performance. The recent work of Metis [23] en-
hances Bayesian optimization and demonstrates its capability to tuning the tail latency of the Bing Ads
key-value store. AdaptiveConfig [10] combines an efficient search algorithm and a business rule engine
to search at run-time for the most optimal job scheduler configuration. Einziger et al. [9] compares hill
climbing and an indicator-based approach for optimization of adaptive cache management. This work
discusses the configuration of the optimization algorithms such as the distance between different samples
and the frequency of taking samples. Their findings show that these particular optimization algorithms
do not perform differently from each other.

The main difference between k8-resource-optimizer and the above works is that the latter mainly
focuses on optimizing performance, whereas we focus on optimizing performance and resource cost.

7 Conclusion

This paper has presented how to apply k8-resource-optimizer to performance optimization of container-
ized, microservice applications during the Release phase of the DevOps lifecyle. When the goal is to
find a near-optimal configuration using a limited sampling budget, our findings show that is better to run
k8-resource optimizer with bayesian optimization without the use of factor screening/sensitivy analysis.
When the goal is the find a configuration that is close to the optimal solution, upfront screening to re-
duce the search space is advisable. Screening is also required for the statistical comparison of different
optimization algorithms so that the collection of a relevant dataset of samples becomes feasible.

The primary limitation of k8-resource-optimizer is that the benchmark scenario used for performance
testing is fixed. For example, consider a benchmark involving two Experiment classes that each trigger
different API operations of the TeaStore application, with an initial workload distribution of 50% each.
One Experiment class is primarily memory-intensive, while the other is predominantly CPU-intensive.
If the overall workload intensity remains constant but the workload distribution shifts to 90%–10%,
the previously determined resource configuration becomes significantly misaligned with actual demands
— resulting in severe under-provisioning for one resource type and over-provisioning for the other. A
promising direction for future work is therefore to develop efficient methods for evaluating a mix of
different Experiment classes with a range of different workload distributions, thereby accounting for
fluctuations in user behavior and enabling interpolation of resource allocations for untested workload
distributions.

Another direction of future work is accounting for multiple versions of the software of the microser-
vices themselves. Consider the deployment of a new version of the TeaStore microservice using a new
container image, or a configuration change in the software. Currently, each software version would
require a new run of k8-resource optimizer from scratch.

16 Optimal configuration of API resources in cloud native computing

References
[1] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu & Ming Zhang

(2017): CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. In: NSDI,
2, pp. 4–2.

[2] Armin Balalaie, Abbas Heydarnoori & Pooyan Jamshidi (2016): Microservices architecture enables devops:
Migration to a cloud-native architecture. IEEE Software 33(3), pp. 42–52.

[3] Betsy Beyer, Niall Richard Murphy, David K Rensin, Kent Kawahara & Stephen Thorne (2018): The Site
Reliability Workbook: Practical Ways to Implement SRE. " O’Reilly Media, Inc.".

[4] Zhen Cao, Sachin Tiwari, Erez Zadok & Vasily Tarasov (2018): Towards Better Understanding of Black-box
Auto-Tuning: A Comparative Analysis for Storage Systems. In: USENIX Annual Technical Conference, pp.
893–907. Available at www.usenix.org/conference/atc18/presentation/cao.

[5] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic & Akhil Sahai (2007): SLA decomposition: Translating
service level objectives to system level thresholds. In: Autonomic Computing, 2007. ICAC’07. Fourth Inter-
national Conference on, IEEE, pp. 3–3.

[6] Cloud Native Computing Foundation (2019): Configure Quality of Service for Pods - Kubernetes. Available
at https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/.

[7] Cloud Native Computing Foundation (2019): Tools for Monitoring Compute, Storage, and Net-
work Resources - Kubernetes. Available at https://v1-10.docs.kubernetes.io/docs/tasks/

debug-application-cluster/resource-usage-monitoring/.
[8] Valentin Dalibard, Michael Schaarschmidt & Eiko Yoneki (2017): BOAT: Building auto-tuners with struc-

tured Bayesian optimization. In: Proceedings of the 26th International Conference on World Wide Web,
International World Wide Web Conferences Steering Committee, pp. 479–488.

[9] Gil Einziger, Ohad Eytan, Roy Friedman & Ben Manes (2018): Adaptive Software Cache Management.
In: Proceedings of the 19th International Middleware Conference, Middleware ’18, ACM, New York,
NY, USA, pp. 94–106, doi:10.1145/3274808.3274816. Available at http://doi.acm.org/10.1145/

3274808.3274816.
[10] R. Han, Z. Zong, L. Y. Chen, S. Wang & J. Zhan (2018): AdaptiveConfig: Run-Time Configuration of Cluster

Schedulers for Cloud Short-Running Jobs. In: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 1519–1526, doi:10.1109/ICDCS.2018.00158.

[11] Jonatan Heyman, Carl Byström, Joakim Hamrén & Hugo Heyman (2019): Locust - A modern load testing
framework. Available at https://locust.io/.

[12] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh & Tim Menzies (2018): Arrow: Low-Level Augmented
Bayesian Optimization for Finding the Best Cloud VM. In: 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), IEEE, pp. 660–670.

[13] Chin-Jung Hsu, Vivek Nair, Tim Menzies & Vincent Freeh (2018): Micky: A Cheaper Alternative for Select-
ing Cloud Instances. arXiv preprint arXiv:1803.05587.

[14] Chin-Jung Hsu, Vivek Nair, Tim Menzies & Vincent W Freeh (2018): Scout: An Experienced Guide to Find
the Best Cloud Configuration. arXiv preprint arXiv:1803.01296.

[15] Anshul Jindal, Vladimir Podolskiy & Michael Gerndt (2019): Performance Modeling for Cloud Microservice
Applications. In: Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’19, Association for Computing Machinery, p. 25–32.

[16] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru Krishnan, Janardhan Kulkarni et al. (2016): Mor-
pheus: Towards Automated SLOs for Enterprise Clusters. In: OSDI, pp. 117–134.

[17] Matthijs Kaminski, Eddy Truyen, Emad Heydari Beni, Bert Lagaisse & Wouter Joosen (2019): A frame-
work for black-box SLO tuning of multi-tenant applications in Kubernetes. In: Proceedings of the 5th In-
ternational Workshop on Container Technologies and Container Clouds, WOC ’19, Association for Com-

www.usenix.org/conference/atc18/presentation/cao
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://v1-10.docs.kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://v1-10.docs.kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
https://doi.org/10.1145/3274808.3274816
http://doi.acm.org/10.1145/3274808.3274816
http://doi.acm.org/10.1145/3274808.3274816
https://doi.org/10.1109/ICDCS.2018.00158
https://locust.io/

E. Truyen & W. Joosen 17

puting Machinery, New York, NY, USA, p. 7–12, doi:10.1145/3366615.3368352. Available at https:
//doi.org/10.1145/3366615.3368352.

[18] Hamzeh Khazaei, Nima Mahmoudi, Cornel Barna & Marin Litoiu (2022): Performance Model-
ing of Microservice Platforms. IEEE Transactions on Cloud Computing 10(4), pp. 2848–2862,
doi:10.1109/TCC.2020.3029092.

[19] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann & Samuel
Kounev (2018): TeaStore: A Micro-Service Reference Application for Benchmarking, Modeling and Re-
source Management Research. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE, pp. 223–236.

[20] Nane Kratzke & Peter-Christian Quint (2017): Understanding cloud-native applications after 10 years of
cloud computing-a systematic mapping study. Journal of Systems and Software 126, pp. 1–16.

[21] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao & Kaushik Dutta (2012): Modeling virtualized
applications using machine learning techniques. In: ACM Sigplan Notices, 47, ACM, pp. 3–14.

[22] Garrett Lahmann, Thom McCann & Wes Lloyd (2018): Container Memory Allocation Discrepancies: An
Investigation on Memory Utilization Gaps for Container-Based Application Deployments. In: Cloud Engi-
neering (IC2E), 2018 IEEE International Conference on, IEEE, pp. 404–405.

[23] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wenjun Dai, Jin Jiang & Guangzhong Sun
(2018): Metis: Robustly Tuning Tail Latencies of Cloud Systems. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pp. 981–992.

[24] Tania Lorido-Botran, Jose Miguel-Alonso & Jose A Lozano (2014): A review of auto-scaling techniques for
elastic applications in cloud environments. Journal of grid computing 12(4), pp. 559–592.

[25] Eddy Truyen Matthijs Kaminski (2024): k8-scalar/k8-resource-optimizer. https://github.com/

k8-scalar/k8-resource-optimizer/. [Accessed: 2024-01-25].

[26] Sergio Moreschini, Shahrzad Pour, Ivan Lanese, Daniel Balouek-Thomert, Justus Bogner, Xiaozhou Li, Fabi-
ano Pecorelli, Jacopo Soldani, Eddy Truyen & Davide Taibi (2025): AI Techniques in the Microservices Life-
Cycle: A Systematic Mapping Study. Computing 107(100), doi:10.1007/s00607-025-01432-z. Available at
https://doi.org/10.1007/s00607-025-01432-z.

[27] Max D Morris (1991): Factorial sampling plans for preliminary computational experiments. Technometrics
33(2), pp. 161–174.

[28] Ali Yadavar Nikravesh, Samuel A Ajila & Chung-Horng Lung (2015): Towards an autonomic auto-scaling
prediction system for cloud resource provisioning. In: Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, IEEE Press, pp. 35–45.

[29] Fernando Noguiera (2019): Bayesian Optimization. https://github.com/fmfn/

BayesianOptimization.

[30] Maria A Rodriguez & Rajkumar Buyya (2018): Container-based cluster orchestration systems: A taxonomy
and future directions. Software: Practice and Experience.

[31] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemyslaw Broniek, Jarek
Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski, Steven Hand & John Wilkes (2020):
Autopilot: workload autoscaling at Google. EuroSys ’20, Association for Computing Machinery,
doi:10.1145/3342195.3387524.

[32] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli,
Michaela Saisana & Stefano Tarantola (2008): Global sensitivity analysis: the primer. John Wiley & Sons.

[33] Eric Schurman & Jake Brutlag (2009): The user and business impact of server delays, additional bytes, and
HTTP chunking in web search. In: Velocity Web Performance and Operations Conference.

[34] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams & Nando De Freitas (2016): Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE 104(1), pp. 148–175.

https://doi.org/10.1145/3366615.3368352
https://doi.org/10.1145/3366615.3368352
https://doi.org/10.1145/3366615.3368352
https://doi.org/10.1109/TCC.2020.3029092
https://github.com/k8-scalar/k8-resource-optimizer/
https://github.com/k8-scalar/k8-resource-optimizer/
https://doi.org/10.1007/s00607-025-01432-z
https://doi.org/10.1007/s00607-025-01432-z
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://doi.org/10.1145/3342195.3387524

18 Optimal configuration of API resources in cloud native computing

[35] Jasper Snoek, Hugo Larochelle & Ryan P Adams (2012): Practical bayesian optimization of machine learn-
ing algorithms. In: Advances in neural information processing systems, pp. 2951–2959.

[36] Eddy Truyen, Bert Lagaisse, Wouter Joosen, Arnout Hoebreckx & Cédric De Dycker (2021): Flexible
Migration in Blue-Green Deployments within a Fixed Cost. In: Proceedings of the 2020 6th Interna-
tional Workshop on Container Technologies and Container Clouds, WOC’20, Association for Comput-
ing Machinery, New York, NY, USA, p. 13–18, doi:10.1145/3429885.3429963. Available at https:

//doi.org/10.1145/3429885.3429963.

[37] Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin Recht & Ion Stoica (2016): Ernest:
Efficient Performance Prediction for Large-Scale Advanced Analytics. In: NSDI, pp. 363–378.

[38] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune & John Wilkes (2015):
Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth European Conference on
Computer Systems, ACM, p. 18.

[39] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H Xia & Li Zhang (2004): A smart hill-climbing algo-
rithm for application server configuration. In: Proceedings of the 13th international conference on World
Wide Web, ACM, pp. 287–296.

[40] Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez, Chengzhong Xu & Rajkumar Buyya (2022):
Machine Learning-based Orchestration of Containers: A Taxonomy and Future Directions 54(10s).
doi:10.1145/3510415.

[41] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song &
Yingchun Yang (2017): Bestconfig: tapping the performance potential of systems via automatic configuration
tuning. In: Proceedings of the 2017 Symposium on Cloud Computing, ACM, pp. 338–350.

A Values.yaml file for TeaStore Deployment

Listing 1: Helm chart values for deploying TeaStore in K8s.
namespace: teastore

version: 1.2.0 #TeaStore version=1.2.0

persistenceReplicas: 1

persistenceCpu: 1000m

persistenceMemory: 1000Mi

webuiReplicas: 1

webuiCpu: 1000m

webuiMemory: 1000Mi

recommenderReplicas: 1

recommenderCpu: 1000m

recommenderMemory: 1000Mi

registryReplicas: 1

registryCpu: 500m

registryMemory: 1000Mi

dbReplicas: 1

dbCpu: 1000m

dbMemory: 1000Mi

https://doi.org/10.1145/3429885.3429963
https://doi.org/10.1145/3429885.3429963
https://doi.org/10.1145/3429885.3429963
https://doi.org/10.1145/3510415

E. Truyen & W. Joosen 19

authReplicas: 1

authCpu: 1000m

authMemory: 1000Mi

imageReplicas: 1

imageCpu: 1000m

imageMemory: 1000Mi

B Optimizer Configuration for TeaStore

Listing 2: Configuration for k8-resource-optimizer targeting the TeaStore deployment.
nbOfIterations: 10

nbOfSamplesPerIteration: 6

charts:

- name: teastore

chartdir: charts/teastore-helm

slas:

- name: silver

chartName: teastore

slos:

throughput: 0.5

99th: 1000.0

nbOfTenants: 10

parameters:

- name: persistenceCpu

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: persistenceMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: webuiCpu

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: webuiMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: recommenderCpu

20 Optimal configuration of API resources in cloud native computing

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: recommenderMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: registryCpu

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: registryMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: dbCpu

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: dbMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: authCpu

searchspace:

min: 500

max: 1125

granularity: 125

suffix: m

- name: authMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

- name: imageCpu

searchspace:

min: 500

max: 1125

granularity: 125

E. Truyen & W. Joosen 21

suffix: m

- name: imageMemory

searchspace:

min: 512

max: 1152

granularity: 128

suffix: Mi

namespaceStrategy: NSPSLA

optimizer: bestconfig

utilFunc: teastore

outputDir: teastore-sensitivy

C Template a String based parameter in an helm chart for K8-resource
optimizer

Listing 3: values.yaml
mySettingChoice: 1

Listing 4: values.schema.yaml
properties:

mySettingChoice:

type: integer

enum:

- 1

- 2

description: |

1 = SimpleSetting

2 = ComplexSetting

Listing 5: deployment.yaml file containing mySettingChoice parameter
templates/deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: myapp

spec:

replicas: 1

selector:

matchLabels:

app: myapp

template:

metadata:

labels:

app: myapp

spec:

containers:

22 Optimal configuration of API resources in cloud native computing

- name: myapp

image: myapp:latest

env:

- name: MY_SETTING

value: |

{{ index (dict 1 SimpleSetting 2 ComplexSetting) .Values.mySettingChoice

}}

D Implemented benchmark scenario

Step Task What happens
0 user Picks a random user postfix number (e.g., user37,

user58, etc.)
1 index Visits the homepage (GET /)
2 loginPage Visits the login page (GET /login)
3 loginAction Logs in with a username/password. Parses the re-

sponse to find category links
4 seeCategoryPage Visits a random category page parsed from the login

response
5 seeProductPage From the category page, picks a random product

page
6 addToCart Adds the product to the cart (GET /cartAc-

tion?addToCart&productid=X)
7 seeCategoryPage2 Visits another category page (repeat)
8 seeProductPage2 Visits another product page (repeat)
9 addToCart2 Adds another product to the cart
10 getProfile Visits the user’s profile page (GET /profile)
11 startAndLogout Repeats homepage visit, then logs out (GET /login-

Action?logout=) and clears cookies

Table 4: Simulated User Flow: Step, Task, and Description. A waiting time of 0ms is set between tasks.

	Introduction
	Background
	Performance optimization
	Factor screening
	Optimization algorithms

	Framework
	Command line interface
	Architecture
	Implementation
	Setting workload intensity and resource parameter conversion

	Evaluation
	Experimental environment
	Factor screening
	Exhaustive data collection
	Reaching the most optimal
	Reaching the near-optimal the most quickly
	Evaluation of factor screening
	Resource utilization

	Towards optimization of application-specific configurations
	Related work
	Conclusion
	Values.yaml file for TeaStore Deployment
	Optimizer Configuration for TeaStore
	Template a String based parameter in an helm chart for K8-resource optimizer
	Implemented benchmark scenario

