
Submitted to:
WACA 2025

This work is licensed under the
Creative Commons Attribution License.

Adaptability as a Programming Pattern in SEArch

Carlos G. Lopez Pombo*

Centro Interdisciplinario de Telecomunicaciones, Electrónica, Computación y Ciencia Aplicada
Universidad Nacional de Río Negro - Sede Andina and CONICET

cglopezpombo@unrn.edu.ar

Pablo Montepagano
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

pmontepagano@dc.uba.ar

Emilio Tuosto
Gran Sasso Science Institute

emilio.tuosto@gssi.it

We recently introduced an execution infrastructure for service-based software dubbed SEArch,
after Service Execution Architecture. SEArch is a language-independent execution infrastructure
capable of performing transparent dynamic reconfiguration of software artefacts.

We argue here that our framework can be used to support adaptability. Our conviction is grounded
on the underlying execution model of SEArch which hinges on a (service) broker that procures
services at run-time based on formal contracts specified by components that “consume” services.
Therefore, cloud applications can adapt to dynamic changes by modifying the contracts used to
search for the services by-need.

1 Introduction

Adaptability can be intuitively understood as the property of a system to suitably react to changes to
its execution environment. Often, adaptation impact on the behaviour of the system without necessarily
affecting its architecture. For instance, fault-tolerance can be tackled by replicating components without
affecting the overall architecture. Embracing, as we do, the view that this is not necessarily the case
for cloud applications raises the question of one can support adaptation mechanisms that may change
the architecture in controllable ways. Arguably, the problem boils down to adopt suitable programming
features allowing developers to implement countermeasures to changes in the execution context.

In this paper we explore the possibility of (re-)using known mechanisms borrowed from the service-
oriented computing (SOC) paradigm.1 Our exploration hinges on an infrastructure, dubbed SEArch

(after Service Execution Architecture) [1], for the discovery and binding of distributed services featuring
language-oblivious and data-aware functional and behavioural compliance of services. We showcase
how SEArch can support architectural reconfigurations dictated by adaptability. After a brief survey on
SEArch, its architecture, and API (cf. Section 2, essentially borrowed from [1]), we illustrate its usage
to tackle the adaptability scenarios described in [2]. We will argue that these scenarios can be uniformly

*On leave from Instituto de Ciencias de la computación CONICET–UBA and Departamento de Computación, Facultad de
Ciencias Exactas y Naturales, Universidad de Buenos Aires

1Although the terminology has evolved, SOC is still widely used and, we believe, still applies to variants such as cloud
computing, fog and edge computing, or the many forms of distributed computing associated with what is known as the Internet
of (Every)Things.
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2 Adaptability as a Programming Pattern in SEArch

treated in SEArch with a single programming pattern. Finally, we draw some conclusions and discuss
further work in 4.

2 An Overview of SEArch

There is a wide range of service-oriented architectures (SOAs) dictating design principles for SOC, each
one with its own idiosyncrasy [3, 4, 5, 6]. We embrace those that hinge on three main concepts: a service
provider, a service client, and a service broker. The latter handles a service repository, a catalogue of
service descriptions searched for in order to discover services required at runtime. In fact, the service
broker is instrumental to the discovery of services according to a contract and of their binding, the
composition mechanism that permits to “glue” services together at runtime as advocated by some SOAs.

To support SOC, SEArch offers a mechanism for populating registries and composing service-based
applications. Registering a service is, in principle, very simple: the service provider sends the service
broker a request for registering a service attaching a (signed) package containing the contract and the
unique resource identifier (URI) of the provided service.

The execution process of a service-based system in SEArch is significantly more complex. The
computational model behind SEArch is supported by Asynchronous Relational Networks (ARNs) [7]
as the formalisation of the elements of an interface theory for service-oriented software architectures.
In ARNs there are two types of elements, processes and communication channels both equipped with
ports. Ports of processes are called provides-points, while those of communication channels are called
requires-points. In the operational semantics of ARNs given in [8] actions performed by a component
can dynamically trigger an automatic and transparent process of discovery and binding of a compliant
service. The composition of ARNs (i.e., how binding is viewed from a formal perspective) is obtained
by “fusing” provides-points and requires-points, subject to a certain compliance check between the con-
tracts associated to them. Under this approach, interoperability is understood at a more abstract level
decoupled from any computational aspect. We represent both provision and requirement contracts as
extended Communicating Finite State Machines [9] (extended CFSM for short), an extension of com-
municating finite-state machines [10] with formal specifications of the functional and non-functional
behaviour of service provided / required (depending of the nature of the port); providing a semantic
notion of compatibility between provision and requirement contracts based on a bisimilarity check.

Figure 1 depicts the workflow. When launched, a component registers its communication channels
to its middleware, each of which has its corresponding contract formalised as a set of extended CFSMs,
one for each requires-point. This is required because the middleware has to mediate the communication
with other components. In fact, when the component of a running application, say C, tries to interact
with another component, the middleware C, say M, captures the attempt and checks whether the commu-
nication session for that communication channel has been created. If no such session exists, the dynamic
reconfiguration process is triggered as follows:

1. M sends the service broker the contract of the communication channel;

2. for each extended CFSM R in the contract, the service broker queries the service repository for
candidates;

3. the service repository returns a list of candidates in the form ⟨Pr,u⟩, where Pr is a extended CFSM
and u is the URI of the service2; the broker checks whether the provision contract Pr is compatible
with the requirement contract R, which is done by resorting to bisimilarity check;

2SEArch is parametric in the implementation of the service repository so we assume it is not capable of checking compli-
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Figure 1: Service execution procedure in SEArch

4. once the service broker has found services satisfying all the requirement contracts, it returns the
set of URIs to M;

5. M opens a communication with the middleware of each service returned by the provider requiring
the execution of the corresponding service.

Then, M sends to or receives from the middleware of the partner component the actual message; and
the execution process proceeds. Notice that during the execution new requirements might crop up; for
instance, because some brokered services need further services.3 This will initiate a new brokerage
phase to discover the newly required services. The schematic view discussed before establishes several
requisites over the implementation of middleware and the service broker. We organise the discussion by
considering these elements and their role in the execution architecture:

The middleware provides a private and a public interface. The former implements functionalities
accessible by service clients and service providers. The public interface implements the capabilities
needed for interacting with service brokers and other middlewares.

The private interface consists of:

• RegisterApp to register a service and expose it in the execution infrastructure. This functionality
opens a bidirectional (low level) communication channel with the middleware that will remain
open in order to support the (high level) communication with other services.

ance using behavioural contracts. We only rely on its capability of returning a list of candidates, obtained by using potentially
more efficient and less precise criteria, for example, an ontology.

3This implies that a service may have one or more required-points associated to communication channels of its own.
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• RegisterChannel to register communication channels expressing requirements. This functional-
ity provides the middleware with the relevant information for triggering the reconfiguration of the
system and managing the communications. The functionality can be used by any software artefact
running in the host, regardless of whether it is a service or client application.

• AppSend / AppRecv to communicate with partner components

• CloseChannel to close a communication channel.

The reader should note the asymmetry between the existence of a function for explicitly closing a com-
munication session, and the lack of one for opening it. The reason for this asymmetry resides in that,
on the one hand, transparency in the dynamic reconfiguration of the system is a key feature of SEArch

but, on the other hand, it is in general not possible to determine whether a communication session will
be used in the future.

The public interface consists of:

• InitChannel to accept the initiation of a point-to-point (low-level) communication channel. This
operation allows the broker to initiate the communication infrastructure that will connect the ser-
vice executing behind their middleware to the other participants in a communication session being
setup.

• StartChannel to receive notifications about point-to-point communication channels. This op-
eration formally notifies the middleware that the brokerage of participants according to a com-
munication channel description was successful and the communication session has been properly
setup.

• MessageExchange to exchange messages between middlewares.

Figure 2 shows the application infrastructure and how buffers are used to provide point-to-point
communication with external services. Within the infrastructure, it is possible to identify the structural
design of the middleware.
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Figure 2: Point-to-point communication between a service client and a service provider.

The service broker exposes only two functionalities in a public interface:
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• BrokerChannel to issue requests for brokerage. This operation allows a middleware to request
for the brokerage of a communication channel, and the subsequent creation of a communication
session to let services interact.

• RegisterProvider to issue requests for the registration of a service provider. This operation
is the external counterpart of the functionality RegisterApp through which the middleware pro-
vides the service providers the possibility of being offered as services available in the execution
infrastructure.

Figure 3 shows the sequence diagram offering a high level view of the process of registration of a
service to the service broker.

Figure 3: Sequence diagram of the process of registration of a service.

Figure 4 shows the brokerage process of a communication channel given the interfaces of the mid-
dleware and the service broker, detailed above in this section.

The process of brokering a communication channel for building a session (cf. Fig. 4) is significantly
more complex. The service client uses the communication channel in the message AppSend (step 3

). Concurrently, the middleware begins the brokerage process by sending the contract to the service
broker (step 4 ) and enqueues the message while acknowledging the service client with a message of
type AppSendRespond (step 5 ). If the service client has to receive a message (AppRecv), the middle-
ware captures the attempt triggering the brokerage and going through the same process for initiating the
communication session. In this case, the service client will remain blocked until the expected message
arrives.

The service broker, upon receiving the contract, queries the service repository for candidates and exe-
cutes the compliance checks. Each compliance check can be too costly so the service broker implements
a cache for storing precomputed positive results.

After choosing concrete providers for the participants in the contract, the service broker performs two
successive rounds of message exchanges with the chosen service provider. In the first round, a message
of type InitChannelRequest is sent (step 7 ) to tell the middlewares that a communication session
involving its service provider is being initiated; the message also contains the URIs of all the other
participants in the communication session. At the same time, this message allows the service broker
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Figure 4: Sequence diagram of the process of brokerage of a communication channel.

to verify that the provider is indeed online. Upon receipt of this message, a middleware must accept
incoming messages for this channel and enqueue them for the eventual reception by the service provider.
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If all the service providers respond successfully with a message of type InitChannelResponse (step 8

), then the service broker performs a second round with a message of type StartChannelRequest (step
9 ), to confirm that the communication session has been initiated.

After receiving both initialization messages, the middleware sends the service provider a message of
type RegisterAppResponse (step 11) containing the UUID of the new communication session. Then,
each service provider can start communicating over this session according to its contracts. Once a session
is initiated, the middlewares establish unidirectional streams with each other to send messages. In Fig. 4
the middleware of the service client opens a stream with the other middleware by sending a message of
type MessageExchange (step 13 ). After the service provider has received the message (steps 14- 15),
it sends a message (steps 16- 17) forcing the middleware of the service provider to establish a stream in
the opposite direction (step 18).

Finally, the service client can close the channel by sending a message of type CloseChannelRequest
(step 20) to its middleware, closing the stream used to communicate with the middleware of the service
provider.

3 Adaptable TeaStore with SEArch

In a quest for a notion of adaptation, the authors of [11] advocate a conceptual framework grounded
on a neat separation of concerns. Starting from the observation that the behaviour of a component
is determined by a program defining control and manipulating data, adaptation requires to consider,
and possibly, modify specific computational or physical resources. The conceptual framework in [11]
envisages adaptation as the possibility of a component to manipulate and take decisions according to a
well-identified set of control data. For instance, an adaptive behaviour may need to account for memory
usage, network traffic, or environmental physical conditions like e.g., temperature. Embracing this view,
allows one to define adaptation as the property of a component of controlling and possibly modifying at
run-time its specific set of control data.

This acceptation implicitly require a monitoring functionality that can retrieve and provided to the
component the control data necessary for enforcing adaptive behaviour.

We describe our programming pattern in Section 3.1 and then demonstrate how to apply our pattern
to a TeaStore scenario in Section 3.2.

3.1 A programming pattern for adaptability in SEArch

We now discuss how the API and the infrastructure of SEArch can suitably support the conceptual
framework of adaptation proposed in [11] in a general way. We argue, in fact, that this conceptual
framework can be captured by a programming pattern that SEArch can naturally support.

An high-level view of services/applications executing in nodes of a SEArch network is given in
Fig. 5. As shown, the service broker is connected to the SEArch middlewares of all the nodes in the
network that execute their own services/applications. Zooming into one of the nodes –the large box in
Fig. 5– one can see three main elements (the 3D boxes):

• a service providing some functionality (leftmost inner 3D box),

• the local middleware (bottom-most 3D box) and

• a detailed view of a service/application implemented as an adaptive system (top-most 3D box).
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Figure 5: Architectural view of a programming pattern for implementing adaptive systems in SEArch

The latter element features a Control loop and the implementation of n alternative Execution-scenarios
together with their associated Communication contracts. The control loop is conceptually split in two
phases: first the control data is acquired from the monitoring activity and then a decision is taken on how
to adapt (if at all).

As we discussed above, we take inspiration from [11] so adaptability can be understood as the ca-
pacity of an agent to respond to changes in the environment. Thus, a significant aspect of our approach
relies on the monitoring of the execution environment in a way that such information can interact and
modify the behaviour of the component. Our programming pattern supports two different monitoring
strategies that can be used both in isolation, or combined. The Sense environment phase in the control
loop is fed with the information collected by the monitoring activity, turns this information into control
data, and analyses the control data to choose a specific scenario. The monitoring activity can be directly
implemented by the component (internal monitoring) or outsourced to an external service (external mon-
itoring). Internal monitoring is supported in SEArch by simply connecting a non-brokered service to the
middleware of the component (see the lilac dashed arrow going from the execution scenarios to the Sense
environment phase). External monitoring is supported by interacting with other participants connected
through the communication channels connected to a separate monitoring service dynamically discovered
and bound through the SEArch infrastructure.

The programming pattern we envisage is as follows:

1. the invocation of a service/application triggers the registration of the n alternative communication
channels and the monitoring channel, whenever the latter is required

2. the Control loop starts a continuous check of the monitoring information collected and exchanged
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by the Monitor, evaluate the environmental conditions based on this information, and chooses an
Execution scenario; finally it dispatches the execution of the code implementing it,

3. the Monitor eventually detects a change in the environmental conditions and sending the newly
collected data to the participants along the communication channel set up by the middleware for
that specific scenario. This information is consumed by the Control loop which, again, evaluates
the environmental conditions possibly requiring the execution to abort and restart in a different
Execution scenario.

3.2 Adaptable TeaStore scenarios in SEArch

In this section we discuss how SEArch can provide support for implementing some salient aspects of
the adaptation scenarios discussed in [2, Sec. 4]. We consider the scenario discussed in [2, Sec. 4.2]
which we briefly summarise.

Cyberattack on External Services In this scenario the system is supposed to react when a service
experiences a cyberattack. The system is deployed in a configuration that uses external services, say
Image Provider, Auth (the authenticator), and Database. For simplicity, we only consider an implemen-
tation consisting of the WebUI and the Image Provider, for which there are two implementations, one as
an external service and a fallback local implementation to be used whenever the external service is not
available, for example, in the event of a cyberattack. Also, leaving aside functional and non-functional
aspects of the interactions, we concentrate on the interoperability aspects so that contracts can be simply
formalised as communicating finite state machines in Fig. 6. The contract for an external Image Provider
service is formalised in Fig. 6a which also features a dedicated monitor for assisting in the detection of
undesired events (in this case, a cyberattack). The contract for the fallback Image Provider service is in
Fig. 6b; intuitively, in this case the monitoring activity is internalised in the Image Provider service.

The implementation of the adaptable WebUI is as follows:

1. the communication with the local middleware is established,

2. both global contracts shown in Fig. 6 are registered in the middleware. Fig. 6a expresses the stan-
dard behaviour of the system in which images are provided by an external Image Provider service
monitored by a local Monitor and Fig. 6b shows the fallback local Image Provider service to be
used in the case that external Image Provider becomes unavailable. In this case, the monitoring
information notifying that the external Image Provider is under attack is sent through the transition
6 WebUI ! attack 7 of the participant ImgP and received by the participant WebUI through the
transition 5 ImgP ? attack 6,

3. the WebUI is initialised with both, the local and the external Image Providers channels, and selects
the external one as the current image provider channel,

4. the main control flow of the WebUI is dispatched and the application starts requesting images
through the function get_image,

5. the function get_image request the image from the current image provider through the function
req_image (shown in the contract of Fig. 6a as the message 0 ImgP ! req 5 of the participant
WebUI),

6. if the image is received (shown in the contract of Fig. 6a as the message 5 ImgP ? img 0 of the
participant WebUI), the execution continues; but if the participant ImgP sends the message attack
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.outputs ImgP .outputs Monitor .outputs WebUI

.state graph .state graph .state graph
0 WebUI ? req 4 0 ImgP ? stop 2 0 ImgP ! req 5
0 WebUI ? stop 2 0 ImgP ! allFine 0 0 ImgP ! stop 3
2 Monitor ! stop 8 0 ImgP ! attack 3 5 ImgP ? attack 6
4 Monitor ? allFine 5 .marking 0 5 ImgP ? img 0
4 Monitor ? attack 6 .end .marking 0
5 WebUI ! img 0 .end
6 WebUI ! attack 7

.marking 0

.end

(a) Contract for the scenario with an external Image Provider service and a dedicated Monitor for the channel

.outputs ImgP .outputs WebUI

.state graph .state graph
0 WebUI ? req 1 0 ImgP ! req 1
0 WebUI ? stop 2 0 ImgP ! stop 3
1 WebUI ! img 0 1 ImgP ? img 0

.marking 0 .marking 0

.end .end

(b) Contract for the fallback scenario where the implementation of the Image Provider is local

Figure 6: Contracts enabling adaptability with respect to the Image Provider

(shown in the contract of Fig. 6a as the message 6 WebUI ! attack 7 of the participant ImgP),
an exception is thrown, triggering the adaptation by configuring the current image provider channel
to point to the local image provider channel and then, requesting the image through the function
req_image (shown in the contract of Fig. 6b as the message 0 ImgP ! req 1 of the participant
WebUI and then the execution continues.

4 Conclusions

The key idea driving the design and implementation of SEArch was to develop an execution archi-
tecture providing dynamic and transparent reconfiguration of service-based software artifacts. Under
SEArch, services are brokered by a dedicated component capable of resolving compliance between
requirements and provisions, by statically analysing formal interoperability contracts. Noteworthy, con-
tracts are formal and, besides specifying the expected communication protocol among participants, they
can also declare functional and non-functional constraints. For simplicity, we considered here only
contracts specifying the communication protocols, but SEArch can easily support adaptation scenarios
using (non-)functional contracts as well.

The possibility of describing each alternative execution as a different communication channel pro-
vides the support for considering alternative executions, hence adapation scenarios, depending on the
control data monitored from the environment. Therefore, supporting adaptability as the possibility of
choosing the best fitted implementation according to data monitored from the execution environment;
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presented in this work as a programming pattern. Although not shown here, our programming patter
can be used to implement in SEArch also the other adaptation scenarios described in [11] once one has
identified the relevant control data.
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