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Global energy consumption has been steadily increasing in the recent years, with data centres emerg-
ing as major contributors. This growth is largely driven by the widespread migration of applications
to the Cloud, alongside a rising number of users consuming digital content. One way for reducing the
energy consumption of data centres involves improving the energy efficiency of the deployed soft-
ware applications. This implies design time and runtime approaches with self-adaptive applications.
Although various strategies have been proposed, there is limited research comparing the architectural
tactics employed in self-adaptive applications. In particular, there is a lack of evaluation regarding
the energy consumption impact of architectural variants proposed in Cloud applications.

To address this gap, we propose a framework to integrate variants in the implementation of appli-
cations and allow to choose one particular variant according to its associated energy consumption at
runtime. We add a monitor component to a Cloud application to track the energy usage of application
containers and select adaptations according to the energy consumption of a microservice.

We have performed an empirical study on the Adaptable TeaStore application in a scenario of
workload traffic on a node within the Grid5000 testbed. We assess the energy consumption of variants
of the recommendation algorithm proposed by the TeaStore application, and we propose a functional
level adaptation by analysing the behaviour of the application. First results show some potential
improvements in the energy efficiency of cloud applications at runtime.

1 Introduction

Global energy consumption has been steadily increasing, with data centres emerging as major contrib-
utors. This growth is largely driven by the widespread migration of applications and businesses to the
Cloud, alongside a rising number of users consuming digital content. To understand the connection
between application behaviour and energy use, two key concepts are essential: energy efficiency and
energy awareness. Energy-efficient applications are designed to operate with minimal energy impact,
while energy-aware applications are developed with a conscious understanding of their energy footprint.

One of the challenges in building energy-efficient applications lies in accessing their energy con-
sumption data. In Cloud environments, where infrastructure is managed by providers and resources are
delivered on a pay-per-use basis, developers often rely on metrics like CPU and memory usage to gauge
performance. However, these metrics alone do not reflect energy consumption. For example, CPU usage
is frequently used as a proxy, but it does not provide a direct measurement of the energy required to
perform specific tasks.

This paper addresses the dynamic adaptation of Cloud applications based on decisions regarding
their energy consumption. For this purpose, we need to analyse the design-time and run-time aspects
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of applications. Design-time analysis helps to identify the components and requirements that can be
integrated into the system to enhance energy efficiency. Following this, run-time analysis enables the
enforcement of energy-efficient behaviour in Cloud applications without compromising their availability,
by leveraging real-time insights about the system and its operating environment.

We rely on the case study of the Adaptable TeaStore [2] application and consider different recom-
mendation algorithms. The Adaptable TeaStore simulates an online tea shop and supports architectural
adaptations, making it an ideal candidate for studying energy-aware design in practice. We extend the
Adaptable TeaStore application with energy awareness. While, in the base application, the CPU load is
monitored to determine resource consumption, we also monitor the energy consumption of the applica-
tion with a software energy profiling tool. Initially, we determine the energy consumption of the different
recommender algorithms. In a second time, when the energy consumption of the application increases,
an adaptation decision may allow to change the recommendation algorithm at run-time.

This paper is organised as follows: Section 2 provides background information and defines the key
concepts used throughout the study. Section 3 describes the proposed extension of the Adaptable Teastore
application. Section 4 specifies research questions and the designed experiment to address these research
questions. Section 5 presents and analyses the results obtained. Section 6 reviews recent related works
in the field. Finally, Section 7 concludes the paper.

2 Background

This section introduces the tools used for monitoring the energy consumed by software applications.
Next, we introduce the TeaStore application. Finally, we explain the Adaptable TeaStore which is the
extension of the TeaStore application to support its re-configuration at run-time.

2.1 Energy Monitoring Tools

The energy consumption of software applications can be measured through various approaches, i.e.,
hardware-based power meters, software-based power meters and combined approaches. Jay et al. [7]
categorise these approaches into four main groups: external devices, intra-node devices, hardware sen-
sors with software interfaces and power/energy software models.

In Cloud computing environments, the hardware-based methods often fall short, measuring the total
energy consumption of a machine or a computing node without offering sufficient granularity to attribute
energy consumption to individual applications or processes running within the shared infrastructure. To
address this limitation, software power meters have emerged as a practical alternative. These tools do
not require external hardware and estimate energy consumption through mathematical models. Most of
them rely on existing hardware sensors and software interfaces, such as Intel’s RAPL (Running Average
Power Limit) for CPUs and Nvidia’s NVML (NVIDIA Management Library) for GPUs [3].

Based on the previous interfaces and memory consumption indicators, other software tools estimate
energy consumption at the process level. Notable examples of software power meters include Linux perf,
Kepler! (targeted for Kubernetes environments), PyJoules?, PowerAPI?, and Scaphandre*. PylJoules,
PowerAPI, and Scaphandre are particularly interesting for their ability to measure energy consumption
at the level of detail required for improving the energy-awareness of software applications.

"https://sustainable-computing.io/
Zhttps://github.com/powerapi-ng/pyJoules
3https://powerapi.org/

“https://github. com/hubblo-org/scaphandre
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2.2 The TeaStore application

TeaStore [9] is a distributed microservice application that emulates an online store for tea and tea related
utilities. Figure 1 depicts its architecture. It is composed of six microservices, one of them being the
registry service.
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Figure 1: TeaStore Architecture, adapted from [9]

The WebUI service is the entrypoint for users’ requests and serves the application web interface to
support interactions. The Authentication service manages user login and session validation, thus en-
suring secure access to the system. The Recommender service leverages rating algorithms to suggest
products to users. Recommendations are generated based on the user behaviour, e.g., the products being
viewed by the user, the items in the shopping cart or the purchasing habits of other users. The Persis-
tence service provides the information about the products and the user’s purchases. The Image provider
service is responsible for delivering the images used throughout the application. It dynamically adjusts
image sizes based on the display context and incorporates caching mechanisms to ensure quick access
to frequently requested images. The Registry service connects all active service instances by relying on
their IP addresses or host-names and corresponding ports. It enables service discovery, thus allowing
microservices to seamlessly locate and communicate with each other. All these services communicate
using REST and Netflix Ribbon client-side load balancer.

2.3 The Adaptable TeaStore

Adaptable TeaStore [2] is an extension of the TeaStore application, and is designed to support dynamic
adaptations when some particular events are triggered. Mandatory and optional services are identified
(see Figure 2). WebUI, Persistence, and Image Provider correspond to the mandatory services, i.e., they
are required for all configurations of the TeaStore application, while Recommender and Authentication
correspond to the optional services, i.e., they could be present or not in a configuration of the TeaStore
application. In addition, these optional services can also be adapted to adjust their resource consumption.

The Recommender service implements four recommendation algorithms, namely Popularity, Slope
One, Preprocessed Slope One, and Order-Based methods. The algorithm is chosen at runtime, for in-
stance, to alleviate/decrease the CPU usage.

After evaluating the source code of Adaptable TeaStore, we determine that only three potential re-
configurations are possible. The Normal Mode, or Default Recommender, restores the default recom-
mendation algorithm, which is the Slope One algorithm. The High Performance Mode configures the
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Figure 2: The feature model of Adaptable TeaStore

system to use the Pre-processed Slope One algorithm, aiming for maximum performance. And, the Low
Power Mode disables the recommendation algorithm, i.e., the recommender is deactivated. According
to the source code, the popularity-based and the order-based algorithms are not enabled for adapting the
Adaptable TeaStore. So in Figure 2, they are shown as abstract features that will not be included in the
(re-)configurations of the Adaptable TeaStore.

Mode transitions are triggered based on CPU usage: when CPU usage exceeds 50%, the system
switches to Low Power mode. If usage drops below 50%, it returns to Normal mode, i.e., the Recom-
mender is switched-on with the activation of the Slope One algorithm. Finally, in the current version of
the Adaptable TeaStore, the High Performance mode is not activated for any event.

3 Extending Adaptable Teastore with Energy Consumption Awareness

To enable energy-awareness, we introduce the tool so-called EnCoMSAS (see the grey component in
the top-right corner of Figure 3). This serves as a higher-layer energy consumption monitoring and
analysis tool. It mainly allows to configure the monitoring frequency, enables the computation of the
energy consumed by the target software application, and facilitates the analysis of energy consumption
differences between different variants of the software application. The EnCoMSAS tool is designed
not only for an specific microservice/application, e.g., Adaptable TeaStore, but it is generic and can be
used for any application. For this, EnCoMSAS receives the name of the software application, it then
filters corresponding metrics, e.g., power consumption, for this application, and it next computes energy
consumption based on the previous metrics.

In this paper, EnCoMSAS uses Scaphandre for computing energy consumption, however EnCoM-
SAS is designed for being easily extended by adding another monitoring tool. Scaphandre reads instan-
taneous power consumption measurements of running applications, as well as of the entire machine, that
are exposed with a Prometheus exporter. In order to evaluate the power consumption of particular mi-
croservices, the measurements should be filtered out to match the software application’s (e.g., Adaptable
TeaStore) containers, which are mapped to specific PIDs. EnCoMSAS calculates energy consumption
by using the equation E = ftf)‘ P(t)dt, where t, is the timestamp at the start of the interval, 7, is the times-
tamp at the end of the interval, and dt is the time increment over which power is integrated. The P(t)
function is calculated by using a trapezoidal rule that increases the accuracy of the estimation of energy
consumption over time. The choice of the rule is based on the approximation of integral E. The equation
can be seen as follows: E = Zf;ol (% * 0t ), where P, and P, are successive power measurements at
times ; and t;, 1, 6t =t; —t;1 is the (constant) sampling interval, and # is the number of iterations for the
energy consumption monitoring (so that n+ 1 samples yield n trapezoids, hence the summation index
runs from i = 0 to i = n— 1). Practically, EnCoMSAS is configured to calculate the energy consumption
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Figure 3: The extended architecture of Adaptable TeaStore

by intervals of 2 seconds. After executing the Scaphandre tool, we found that 2 seconds is the minimum
time interval that allows to collect power consumption for calculating energy consumption. However,
more experiments are needed to understand how this time interval could affect the energy consumption
of the entire solution.

In order to enable energy awareness of Adaptable TeaStore, we extended its architecture as seen in
Figure 3 (see the grey classes inside the Adaptable TeaStore component). The EnergyConsumption-
Collector class is added and the AdaptationScheduler is updated to use the new collector. The Energy-
ConsumptionCollector class extends previous collectors by implementing the IMetricsCollector interface
and by adding the getEnergyConsumption() method. This method collects the energy consumed through
RESTful GET requests to an energy consumption monitor, i.e., EnCoMSAS, that is instrumented by a
power consumption profiling tool, namely Scaphandre. The max property serves to store the maximum
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energy consumption obtained during the executions of the experiment; this value allows to normalise the
energy consumption to make it comparable with other measurements.

The AdaptationScheduler class is introduced to allow the Recommender service to communicate
with the energy consumption collector through the IMetricsCollector interface. It allows to gather energy
consumption measurements when adaptations are performed.

The analysis performed in the AdaptationScheduler class leverages the existing structure provided
in Adaptable TeaStore (for the CPU load analysis) by including the evaluation of energy consumption
variations. The AdaptationScheduler class defines conditions required to trigger adaptations. These
conditions are evaluated through the ConditionEvaluator interface, which provides several comparison
operations, including: between two bounds, greater than, less than, etc. The conditions are periodically
checked by the ContinuousObservationScheduler class: it sets up listeners for analysing the increase
or decrease of the energy consumption at the application-level in order to ensure that adaptations are
triggered as soon as the relevant conditions are met.

4 Experimentation Study

This section first presents the research questions and hypothesis for the study design. We then introduce
the adaptation scenarios of the Adaptable TeaStore which serves as motivating examples for validating
our proposal. Finally, we describe the protocol we followed for conducting a controlled experiment.

4.1 Research Questions, Hypothesis and Metrics

The goal of the study is to evaluate the effectiveness of EnCoMSAS to monitor energy consumption
at design- and run-time. To do that, we run an experimental study in which EnCoMSAS is executed
for enabling the comparison of the energy consumed by the different configurations of the Adaptable
TeaStore. From this goal, we derive the following two research questions:

RQ1: Does EnCoMSAS enable the analysis of the impact of the variants of the Adaptable TeaStore on
its energy consumption?

RQ2: Does EnCoMSAS enable the analysis of runtime adaptations of the Adaptable TeaStore on its
energy consumption?

To answer these research questions, we conducted a controlled experiment. We identify as an hy-
pothesis that “the service variants and adaptations at runtime influence the energy consumed by the
Adaptable TeaStore, and the proposed EnCoMSAS should enable the evaluation of this influence”. More-
over, the metric collected and analysed for this controlled experiment is focused on the energy consump-
tion measurement (in Joules).

4.2 Adaptation scenarios of Adaptable TeaStore

In this paper, we focus on the recommender service of Adaptable TeaStore. Thus, we first configure
Adaptable TeaStore for each of the four algorithms of the recommender service. Then, we gather the en-
ergy consumption of the five versions of Adaptable TeaStore, i.e., one version for each algorithm and one
version with a deactivated recommender service, and we provide statistical evidence for answering RQ1.

On the other hand, in [2], different scenarios of adaptation at runtime are introduced such as un-
available resources, cyber-attack, requirements changes or traffic increase. To answer RQ2, we focus on
the Benign Traffic Increase scenario in which incoming traffic towards the WebU| increases significantly
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due to a genuine increase in users’ interactions. In order to handle the increased load, the application is
adapted to the lower-power version by switching to a more energy-efficient recommendation algorithm.
Thus, we investigate the impact on the energy consumed by Adaptable TeaStore under two distinct states:
1) without adaptations, i.e., using the default configuration (Normal mode) of the recommender service;
and ii) with adaptations, i.e., activating the Lower Power mode to use the most-energy efficient algorithm
to reduce energy consumption.

4.3 Experimentation protocol

Figure 4 illustrates the execution flow of the experiment. We considered two execution environments: a
local environment, where scripts run on a local machine, and the Grid5000 environment [4] .

To warm up the application, we deploy Adaptable TeaStore and run a medium-intensity workload,
which is characterized by an increasing workload execution for 120 seconds, with maximum peak of
1000 requests in parallel during 10 seconds, as done in Kistowski et al. [9]. We then start the energy
consumption monitor, that collects the energy consumed by the Adaptable TeaStore during 110 seconds.
Once the energy consumption data is collected, it is exported into JSON files. Finally, the Grid5000
environment is cleaned up. This process is repeated 30 times. Once the number of iterations is finished,
the analysis is performed to provide evidence about the extent to which the energy consumption was
affected.

We use the protocol for two distinct scenarios: without and with adaptation. Without adaptation
(NOADAPT), the application runs without changing its recommendation algorithm. These experiments
allow to analyse each algorithm individually and define the most energy-efficient one. With adaptations
(ADAPT), the application initially starts in the normal mode and dynamically transitions between high
performance mode and the low power mode, differently from Adaptable TeaStore CPU analysis that
disables the high performance mode and switches between the normal mode and the low power mode.

Finally, in our extension of Adaptable TeaStore, we added a flag to manage the activation of its

Shttps://www.grids5000.fr/
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Figure 4: Step-by-step execution of the experiments
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adaptable mechanisms. It allows to ensure that the execution of the NOADAPT scenario is not affected
by the presence of adaptable components, specially the analysis component from Adaptable TeaStore
that is permanently running.

5 Experimentation Results

To collect the data analysed in this section, the controlled experiment was conducted on the Nova cluster
of the Grid5000 platform. The Nova cluster is composed of 20 nodes, each of these nodes is equipped
with 64 GB of RAM, 2 CPUs Intel Xeon E5-2620 with 8 cores per CPU, 598 GB of storage with 25 GB
allocated per user, and a 10 Gbps network connection.

As mentioned in Section 4.3, we executed 30 iterations of each scenario. To optimise the overall
execution time of the experiment, the two scenarios (i.e., with and without adaptation) were executed in
parallel on two different nodes. Moreover, to simulate the user requests, we use the HttpLoadGenerator
technique [8]. This technique is already implemented in Adaptable TeaStore and can be deployed in
the Docker environment. Adaptable TeaStore proposes three workloads (High, Medium and Low). We
activate the Medium workload to run the first scenario of the experiment and to answer RQl, i.e., study in
which extent the recommender algorithms affect the energy consumption. Whilst for answering RQ2 by
running the second scenario, i.e., study how runtime adapatation (re-configurations) affect energy con-
sumption, we first activate the Medium workload and increase it every two seconds, it is made by using
the Load Generator implemented by the original TeaStore application that allows to increase quantity of
activated users.

Finally, the workload for each scenario was always executed on the same node to ensure the use
of the same computing resources. It allows keep the experiment controlled in order to gather energy
consumption measurements that are statistically comparable.

5.1 RQI1: Does EnCoMSAS enable the analysis of the impact of the variants of the
Adaptable TeaStore on its energy consumption?

To answer RQ1, we monitored Adaptable TeaStore after users requests were simulated and sent via an
exposed API endpoint of the WebUI service. The WebUI service then calls the Recommender service that
is already configured with the algorithm that is being evaluated. For the experiment, we study each of the
four algorithms of Adaptable TeaStore and the version in which no recommender algorithm is activated.

Once the data are collected, we first analyze the distribution of the energy consumption measure-
ments (in Joules). To do that, we used the Shapiro statistical test, which confirmed that the energy
consumption collected from the 30 iterations executed for each version of Adaptable TeaStore presented
a non-normal distribution curve. Next, we calculate the average values of the collected energy con-
sumption measurements and calculate the relative standard deviation of the energy consumption over
30 iterations. These relative standard deviations show that the fluctuations of the values are small (i.e.,
less than 1) so the average values can be used as representative values for the 30 iterations. Finally,
we perform the Wilcoxon-Mann-Withney statistical test to evaluate significance differences of energy
consumption of the versions of Adaptable TeaStore.

Figure 5 and Table 1 (see Columns 2 and 3) present the distribution of the energy consumed by
Adaptable TeaStore for the five versions (the deactivate version and the activation of each algorithm
successively). As observed, the Order-Based version exhibits the highest outlier, so it presents the most
significant deviation, i.e., 28.59 as average with 1.1 as standard deviation, with respect to the others.
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Figure 5: Distribution of the energy consumption

Table 1: The distribution of the energy consumed by the recommender algorithms, including the deac-
tivating version. Where: DEA = Deactivate, OB = Order-Based, POP = Popularity, SO = Slope One,
PSO = Preprocessed Slope One, AEC = average of energy consumption (EC in Joule unit), RSEC =
relative standard deviation of EC, DEC = difference of EC vs Base, p-value= p-value of Wilcoxon test

DEA SO OB POP
AEC | RSEC %DEC | p-value | %DEC | p-value | %DEC | p-value | %DEC | p-value
DEA | 18.10 | 0.64 - - - - - - - -
SO | 1851 | 0.66 - 0.98 - - - - - -
OB | 21.24 | 0.62 - 0.18 - 0.13 - - - -
POP | 2246 | 0.72 - 0.38 - 0.26 - 0.71 - -
PSO | 25.09 | 0.65 - 0.14 35.34 0.046 - 0.57 - 0.40

However, if we take out the outlier, the deviation is proved, i.e., 21.24 as average with 0.62 as standard
deviation (see Row 5 in Table 1). The Popularity, Deactivate and Slope One versions also present some
outliers, however their distributions are comparatively closer to the average value of the distribution.

Moreover, Deactivate emerges as the most energy-efficient version with an average of 18.10J (and a
relative standard deviation of 0.64). It is followed closely by the Slope One version with 18.51J as average
(and 0.66 as relative standard deviation). The Order-Based version consumes 21.24] (and presents a
relative standard deviation of 0.62, notice that these values were obtained after taking out the outlier
value), the Popularity version consumes 22.46J and the Preprocessed Slope One version consumes the
highest energy consumption at 25.09], with relative standard deviation of 0.72 and 0.65, respectively.

As mentioned, we next analyse if there is any significant difference, i.e., 95% of confidence or p-
value <=5%, of the energy consumption of the executing versions of Adaptable TeaStore. To do that,



10 Adaptable Teastore with Energy Consumption Awareness: A Case Study

as the energy consumption data does not follow a normal distribution (it was confirmed through the
Shapiro statistical test), we applied the Wilcoxon-Mann-Whitney statistical test. Table 1 summarises
the results obtained from this statistical test. For instance, Columns 4 presents the significant percentages
of difference of energy consumption between the Deactivate version versus the activation of each of the
four recommender algorithms (notice — means not significant difference was obtained) ; and Column 5
introduces the p-value after executing the Wilcoxon-Mann-Whitney that helps deciding if difference is
significant or not.

As observed in Table 1, the Slope One version and the Preprocessed Slope One version presents
a significance difference of energy consumption of 35.34% with p-value of 0.046. It means that the
Preprocessed Slope One version of Adaptable TeaStore consumes 35.34% more energy with respect to
the Slope One version of Adaptable TeaStore. For the rest of comparisons no significant differences were
obtained.

In response to RQ1: Seeing the results, we demonstrated that EnCoMSAS enables the analy-
sis of the impact on the energy consumption of the recommender service variants of Adaptable
TeaStore. After running the controlled experiment, we found that the Preprocessed Slope One
version consumes 35.34% more energy than the Slope One version. No more significant dif-
ferences were found.

5.2 RQ2: Does EnCoMSAS enable the analysis of runtime adaptations of the Adaptable
TeaStore on its energy consumption?

To answer RQ2, we conduct a controlled experiment following the protocol described in Section 4.3.
The experiment was conducted under two scenarios: with adaptation (ADAPT) and without adaptation
(NOADAPT). For collecting energy consumption measurements, we run Adaptable TeaStore instru-
mented with EnCoMSAS.

According to the feature model of Adaptable TeaStore introduced in Figure 2, the recommender
service has two available modes, i.e., Normal and High Performance modes that respectively activate the
Slope One and the Preprocessed Slope One algorithms.

Energy Consumption Distribution - NOADAPT Energy Consumption Distribution - ADAPT

10 II
8A i

Frequency
Frequency

40
Energy () Energy ()

(a) Energy Consumption of NOADAPT (b) Energy Consumption of ADAPT

Figure 6: Distribution of the energy consumption of two scenarios
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As observed in Figure 6, ADAPT tends to consume more energy than NOADAPT. The difference in
the energy consumption distribution is attributed to the adaptive behaviour of the Recommender service
in the ADAPT scenario of the application. At runtime, the Recommender dynamically selects different
algorithms based on system conditions, i.e., reduce the energy consumption in response of an increasing
workload and relax the energy consumption restriction when workload is reduced. This behaviour is
particularly evident in the energy interval between 40J and 60J, as shown in both graphs. In this range,
the adapted version consistently demonstrates higher energy consumption, whereas the non-adaptive
version shows a gradual decrease in energy usage.

Regarding the NOADAPT scenario, we chose the default configuration of the Adaptable TeaStore
which is the Normal Mode. It means that the NOADAPT scenario runs the Slope one algorithm and no
adaptations are executed.

Whilst for the ADAPT scenario, based on the results from the algorithm analysis in the previous sec-
tion and the available adaptation mechanisms in the application, we configured the Adaptable TeaStore to
use the Slope One algorithm, identified as the most energy efficient, for the Normal Mode. For the High
Performance Mode, we retained the Preprocessed Slope One algorithm, as it is already implemented in
the application’s source code.

Figure 7 and Table 2 present the distribution of energy consumption across both scenarios. As ob-
served, the lowest recorded energy consumption occurs in the non-adaptive scenario, while the highest
consumption appears in the adaptive scenario. The ADAPT version present a energy consumption av-
erage of 45.44 and a RSEC of 0.72, while NOADAPT presents 32.53 for the average and the RSEC

Energy Consumption Comparison Between Variants

140

120

100

NOADAPT ADAPT

Figure 7: Data distribution of energy consumption between variants

Table 2: The distribution of the energy consumed by the Adaptable TeaStore versions. Where: NOAD-
APT = No adaptation, ADAPT = Adaptable version, AEC = average of energy consumption (EC in Joule
unit), RSEC = relative standard deviation of EC, DEC = difference of EC vs Base, p-value= p-value of
Wilcoxon test

ADAPT

AEC | RSEC %DEC | p-value
ADAPT | 4544 | 0.72 - -

NOADAPT | 32.53 | 0.79 39.69 0.011
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of 0.72. Based in the p-value, there is a significant difference between the both approaches, ADAPT
consumes 39.69% more energy with respect to NOADAPT.

In the ADAPT version, we need to consider that the recommendation algorithms will learn from the
workloads and provide the products according to this task, increasing the energy consumption.

Over time, the non-adaptive version exhibits a noticeable upward trend in energy consumption, oc-
casionally surpassing the adapted version in terms of peak usage. This fluctuation results in alternating
periods where the highest energy consumption is recorded in the non-adaptive scenario.

In response to RQ2: Seeing the results, we demonstrated that EnCoMSAS enables the analy-
sis of energy consumption for the run-time adaptations of Adaptable TeaStore. After running
the controlled experiment, we found that using the application with adaptation requires more
energy consumption than the version without adaptation. Running the experiments, we got
that the adaptation version consumes 39.69% more than the version without adaptation (with
the most energy efficient algorithm).

6 Related Work

The related work can be broadly categorised into two areas: research focused on designing energy-
efficient architectures that offer tactics and patterns for building greener Cloud applications, and re-
search exploring runtime adaptations that consider energy-consumption metrics. The latter remains less
explored, especially when considering performance-related metrics such as energy consumption rather
than CPU load or memory usage.

Energy-efficient architectures. The energy consumption of Cloud applications has been widely ex-
plored across various fields in the literature. Some studies estimate energy usage based on the applica-
tion’s consumption of machine resources such as CPU and memory. Others take a broader approach by
measuring the host machine’s overall energy consumption to infer the energy footprint of the application.

In [15], Xiao et al. analyse tactics and patterns from the literature related to energy consumption in
microservices, selecting three tactics and three patterns, and subsequently examining the trade-offs with
maintainability and performance. In [11], Noureddine and Le Goaer follow the same principle, analysing
the impact of desgin patterns on energy consumption. In contrast, our work presents an in-depth analysis
of adaptation at the functional level of a microservice.

In [14], Werner et al. propose a Kubernetes-based framework for evaluating Cloud applications
using sustainability, quality, and performance metrics across different architectural layers. Their analysis
offers a high-level view of application metrics. In contrast, our work provides a more fine-grained,
function-level analysis focused solely on energy consumption. We extended a Cloud application that
supports adaptations based on CPU usage to also support adaptations triggered by energy consumption
at runtime, offering deeper insight beyond the broader design-time architectural analysis presented in
their study.

Run-time Application Adaptations. Existing self-adaptive systems that address energy consumption
typically base decisions on host-level resource usage. For instance, in [10], Malik et al. aim to re-
duce energy consumption by scaling resources based on performance metrics and power meter readings.
Berkane et al. propose in [1] some elastic scaling rules informed by user activity and server utilisation,
while Huber et al. [5] focus on minimising resource usage while preserving response time.
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Our work differs by targeting energy consumption at the application level, independently of infras-
tructure metrics. This approach allows us to isolate and understand the impact of runtime adaptations
driven solely by energy usage, particularly through the selection of algorithms designed to optimise
energy efficiency of one microservice.

7 Conclusion

Understanding the energy consumption of applications is crucial for developing energy-efficient solu-
tions. Through the analysis, developers can make better decisions about which architectural adaptations
best suit specific scenarios. For instance, in an online store environment, like in this work, periods of
high demand such as during peak sales seasons may call for performance-optimised configurations, even
at the cost of increased energy usage. By balancing performance requirements with energy-consumption
considerations, it becomes possible to create adaptable applications that are both energy-efficient and
responsive to changing conditions. Therefore, in this paper, we introduced the EnCoMSAS tool that al-
lows to compute and analyse the energy consumed by software applications at design- and runtime, and
in no adapted and dynamic adapted scenarios. Moreover, EnCoMSAS is able to set up the monitoring
frequency.

Based on the conducted experiments to evaluate the effectiveness of EnCoMSAS, we first assess
the extent in which the algorithms implemented by Adaptable TeaStore for its recommender service
affect the energy consumption. We found that the most energy efficient algorithm is Slope One. A
second controlled experiment was performed to evaluate the extent in which the adaptation version of
Adaptable TeaStore affect its energy consumption with respect to its non adaptation version. It proofs
the effectiveness of EnCoMSAS for running this experiments in which the response time is required.
However, more experiments are needed in order to understand what is the impact of EnCoMSAS on
qualitiy of services attributes of software applications such as performance and energy efficiency itself.

Another future work is to study what is the impact to have an external component, i.e., not as part
of the Adaptable TeaStore, for the adaptations analysis and planning, such this is made in the MAPE-K
loop [6]. Centralising the adaptation logic in a single internal service, as observed in our experiment,
may limit the effectiveness of the energy efficiency. By decoupling adaptation decisions from the core
services, it becomes possible to make more informed and flexible energy-aware adjustments across the
application ecosystem. However, we should run more experiments to confirm our hypothesis.
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