
Submitted to:
WACA 2025

© B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton
This work is licensed under the
Creative Commons Attribution License.

AdaptiFlow: An Extensible Framework for
Event-Driven Autonomy in Cloud Microservices

Brice Arléon Zemtsop Ndadji
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

brcie-arleon.zemtsop-ndadji@inria.fr

Simon Bliudze
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

simon.bliudze@inria.fr

Clément Quinton
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

clement.quinton@inria.fr

Modern cloud architectures demand self-adaptive capabilities to manage dynamic operational con-
ditions, yet existing solutions often impose centralized control models ill-suited to microservices’
decentralized nature. This paper presents AdaptiFlow, a framework that reimagines autonomic
computing through abstraction layers focused on the Monitor and Execute phases of the MAPE-K
loop [7]. By decoupling metrics collection and action execution from adaptation logic, AdaptiFlow
enables microservices to evolve into autonomous elements through standardized interfaces, preserv-
ing their architectural independence while enabling system-wide adaptability. The framework intro-
duces: (1) Metrics Collectors for unified infrastructure/business metric gathering, (2) Adaptation
Actions as declarative actuators for runtime adjustments, and (3) a lightweight Event-Driven and
rule-based mechanism for adaptation logic specification. Validation through the enhanced Adapt-
able TeaStore benchmark [2] demonstrates practical implementation of three adaptation scenarios
targeting three levels of autonomy—self-healing (database recovery), self-protection (DDoS mitiga-
tion), and self-optimization (traffic management)—with minimal code modification per service. Key
innovations include a workflow for gradual service instrumentation and evidence that decentralized
adaptation can emerge from localized decisions without global coordination. The work bridges au-
tonomic computing theory with cloud-native practice, providing both a conceptual framework and
concrete tools for building resilient distributed systems. Future work includes integration with for-
mal coordination models like JavaBIP [3] to avoid conflicting adaptation scenarios and improved AI
agents techniques using AWARE [16] for proactive adaptations.

Keywords: self-adaptive systems, cloud microservices, MAPE-K loop, decentralized adapta-
tion, autonomic computing, adaptive workflows

1 Introduction

Modern cloud architectures face growing complexity due to their distributed nature, necessitating sys-
tems that autonomously adapt to dynamic conditions. The MAPE-K loop [7] (Monitor-Analyze-Plan-
Execute-Knowledge) has long served as the foundation for self-adaptive systems, traditionally imple-
mented as a centralized, reactive, and sequential loop for executing adaptations [16]. However, mi-
croservices’ decentralized nature demands a paradigm shift toward separating functional and adaptation
concerns. Drawing inspiration from hardware abstraction layers (HALs) in operating systems, this paper

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

introduces an abstraction layer focused on the Monitor and Execute phases of MAPE-K, enabling mi-
croservices to expose monitoring data and accept control commands without invasive code changes. As
envisioned in the original Autonomic Computing Vision (ACV) [7], this approach ensures "the managed
element can be adapted to enable the autonomic manager to monitor and control it," bridging the gap
between non-adaptive systems and self-managing elements.

We present AdaptiFlow, a framework providing standardized interfaces to instrument microser-
vices for self-adaptation. AdaptiFlow’s architecture is designed to address the unique challenges of
self-adaptive systems in cloud-native environments, where decentralization, scalability, and context-
awareness are critical. Self-adaptive systems are capable of dynamically altering their structure and
behavior during runtime by continuously evaluating their environment, internal state, and operational
goals [11]. For instance, consider a microservice that responds to a sudden workload increase by dis-
abling non-essential functionalities. An online retailer, for example, might temporarily deactivate its
computationally intensive recommendation engine during peak traffic periods. Such adaptations enable
the system to preserve critical performance metrics (e.g., latency, cpu / memory usage) despite fluctuating
demands. To build a self-adaptive system, developers must encode logic that defines the data to observe
(e.g. performance metrics), the events (e.g. traffic increase, service unavailable, DDoS Attack), the con-
ditions triggering adaptation and the specific mechanisms for executing those changes. AdaptiFlow’s
core abstraction layer comprises:

• Metrics Collectors: Unified APIs to gather infrastructure (CPU, latency) and business-level met-
rics (cache hits, transaction rates).

• Adaptation Actions: Declarative interfaces to define infrastructure-level (e.g., scaling) and business-
level (e.g., feature toggling) actuators.

By decoupling monitoring and execution from adaptation logic, AdaptiFlow enables diverse strate-
gies for analysis and planning. Developers can implement:

• Internal Logic: Rule-based adaptations (e.g., threshold-driven events) embedded directly into
services.

• Exogenous Logic: External agents or planners (e.g., AI agents) leveraging AdaptiFlow’s inter-
faces to collect metrics and execute actions.

To validate this approach, we augment AdaptiFlow with event-driven concepts that enable rule-based
adaptation logic. The framework provides Event Observation mechanisms to detect threshold-based
(e.g., CPU > 80%) or custom events (e.g., service degradation patterns) through periodic polling or on-
demand triggers. These events act as semantic bridges between raw metrics and actionable adaptations,
allowing developers to declaratively specify when and how the system should respond to changing con-
ditions.

We validate AdaptiFlow by building the Adaptable TeaStore with the main support of the adapta-
tion scenarios described in the Adaptable TeaStore Specification [2], a description of the TeaStore mi-
croservices benchmark [18] extended to support autonomous behaviour. Our experiments demonstrate
AdaptiFlow’s practicality through three implemented adaptation scenarios targeting three levels of au-
tonomy: self-healing (service recovery), self-protection (DDoS mitigation), and self-optimization (traffic
management) with minimal code changes.

Key Contributions:

• An abstraction layer for monitoring/execution, transforming non-adaptive services into autonomic
elements.

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 3

• A workflow to instrument microservices with metrics collectors and actuators, aligning with ACV’s
vision.

• Empirical validation through the Adaptable TeaStore [2], an extended microservice benchmark
supporting autonomic behaviors.

Paper Structure: Section 2 present the state of art, Section 3 outlines the framework design. Section
4 details experimental results with the TeaStore [18] case study. Section 5 concludes with future work,
including integration with formal coordination models. A class diagram is provided in the appendix.

2 State of art

Figure 1: MAPE-K Loop with all functional elements: Monitor, Analyze, Plan, Execute, Knowledge.

The evolution of self-adaptive systems has been shaped by three fundamental paradigms that influ-
ence the design of AdaptiFlow: the principles of autonomic computing [7] , the MAPE-K control loop
[7] and rule-based adaptation techniques [15]. These fundamental concepts are progressively addressing
the challenges of managing complex distributed systems, from early monolithic architectures to modern
cloud-native environments. Figure 1 provides a visual summary of the MAPE-K reference model that
underpins much contemporary adaptation research.

2.1 Autonomic Computing and Self-Adaptive Systems

Modern computing systems are evolving toward autonomic paradigms, where components manage their
behavior autonomously to reduce human intervention. Inspired by biological systems, the vision of
autonomic computing [7] envisions distributed networks of autonomic elements, self-managing entities
that deliver services while adhering to predefined policies. Each element consists of a managed resource
(e.g., a database, CPU, or microservice) and an autonomic manager that monitors and controls it. Over
time, the distinction between manager and managed resource may dissolve [7], yielding fully integrated
elements capable of independent decision-making while collaborating through decentralized interactions.
This shift mirrors natural systems like ant colonies, where collective intelligence emerges from localized
interactions [7] rather than centralized control.

4 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

2.2 MAPE-K Framework Fundamentals

The MAPE-K (Monitor-Analyze-Plan-Execute-Knowledge) loop (Fig. 1), introduced over two decades
ago by Kephart et al. [7], remains a cornerstone of self-adaptive systems. It structures adaptation into
four phases:

• Monitor: Observes the system’s internal state and environment (e.g., CPU usage, request latency).

• Analyze: Evaluates observations to identify adaptation needs (e.g., detecting service failures).

• Plan: Generates strategies to achieve desired states (e.g., scaling instances, enabling circuit break-
ers).

• Execute: Implements selected adaptation actions.

A shared Knowledge (K) repository stores contextual data (e.g., metrics, policies) to support decision-
making across phases. Originally applied to monolithic systems, MAPE-K has since been adapted for
cloud computing [9, 6, 11], IoT [12, 13], and cybersecurity [4, 5, 17].

2.3 Rule-Based Adaptation with Drools

Rule-based systems like Drools [15] can be use to operationalize the Analyze and Plan phases of MAPE-
K by codifying adaptation logic into declarative condition-action pairs. A rule’s structure "when condi-
tion, then action" enables developers to declaratively specify behaviors (e.g., "when CPU > 80%, then
scale instances"). Unlike traditional code, rules are modular, auditable, and dynamically updatable, mak-
ing them ideal for scenarios requiring rapid adjustments (e.g., fraud detection, load management). For
example, Drools filters data through conditions and triggers actions when matches occur. This approach
bridges technical and business requirements, allowing non-developers to contribute to adaptation poli-
cies.

While there exist frameworks, e.g., rule engines like Drool, that simplify adaptation logic, we are not
aware of lightweight solutions providing a common interface for service monitoring and execution and
focusing on the separation of concerns between the functional and adaptation layers in Cloud Computing
systems.

3 Framework Design

AdaptiFlow’s architecture reimagines autonomous management for cloud-native systems through a de-
composition of the MAPE-K loop. Our design introduces a modular approach based on two key princi-
ples: (1) standardization of observation and actuation interfaces, and (2) flexible integration of various
adaptation strategies. This separation allows microservices to retain their architectural independence
while participating in system-wide adaptation models. Figure 2 provides a visual illustration of this
decentralized architecture, which we detail in the following subsections.

3.1 Architectural Overview

AdaptiFlow provide a set of directives to specify the adaptation logic. The framework operationalizes
the MAPE-K loop by focusing on two core phases Monitor and Execute tailored for decentralized
cloud environments. We intentionally omit the Analyze and Plan phases since our goal is to allow the
separation of concerns. However, in order to allow closing the loop in the absence of these two phases,
we do provide the mechanism for triggering actions when a corresponding condition is satisfied using

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 5

an event-driven methodology. Since our solution is provided in the form of a Java library, it allows for
specification of arbitrary custom adaptation strategies. However it intentionally does not provide any
dedicated syntax or abstractions for that purpose. These are left for separate future work.

Figure 2: AdaptiFlow’s decentralized architecture, emphasizing modular components for metrics collec-
tion, adaptation action execution and event handling.

In the Monitor phase, metrics collectors continuously gather infrastructure (e.g., CPU, memory) and
business-level (e.g., request rates, services states) data, providing real-time insights into system state. For
example, a LatencyCollector might track API response times, while a ResourceUsageCollector
monitors cloud resource availability.

The Execute phase then invokes predefined or custom adaptation actions, such as scaling services
via Kubernetes (ScaleService) or disabling non-critical features like recommendations (EnableFall-
backAlgorithm). AdaptiFlow use a decentralize decision-making through event subscriptions: services
subscribe to relevant events (e.g., an auth service subscribing to DDoSAttackEvent), eliminating reliance
on a global planner.

The Analyze phase employs conditional evaluators to interpret the data collected, detecting events
such as HighWorkloadEvent (request rate > 1,000/s OR CPU > 80%) or ServiceFailureEvent
(health check timeout). These evaluators apply threshold-based rules (e.g., CPU > 80%) or custom
logic (e.g., correlating disk I/O with checkout failures) to determine adaptation triggers.

The shared Knowledge (K) is derived dynamically from distributed metrics rather than a static repos-
itory, ensuring context-aware decisions. This approach offers three key advantages: (1) Decentralized
control, enabling parallel adaptations; (2) Transparency, as rules and events are explicitly defined and au-
ditable; and (3) Flexibility, supporting hybrid adaptations that combine infrastructure adjustments (scal-
ing) with business logic changes (feature toggling). AdaptiFlow distributes adaptation logic across mi-
croservices, aligning with their autonomous nature. This design choice ensures minimal overhead while
enabling granular, context-driven adaptations.

To realize this architecture, AdaptiFlow decomposes the adaptation process into six modular compo-
nents (Fig. 2), each addressing a distinct aspect of self-adaptation:

• Metrics Collectors (Perception of the Environment): gather infrastructure and business-level met-
rics (e.g., CPU usage, API latency) to establish a real-time view of the context.

6 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

• Adaptation Actions (Executing Change): translate decisions into runtime adjustments, ranging
from infrastructure operations (e.g., scaling) to business logic modifications (e.g., enabling fall-
back algorithms).

• Event Management: the events are specify using conditional evaluators, then services or service
components subscribe to them and the event observation start. When the conditions specify in the
event conditional evaluator are meet, the event is trigger and the event subscribers are notify.

– Conditional Evaluators (Adaptive Decision-Making): apply threshold-based or custom
logic (e.g., "IF cache hit ratio < 20% AND peak hour") to determine when events should
trigger and also when subscribers should be notify to execute adaptations. Conditional Eval-
uators are part of the specification of both events and events subscribers.

– Event Specification (Contextual Awareness): defines the structure of an event by the use of
conditional evaluators on the collected metrics (e.g., ResourceExhaustionEvent = CPU >
90% && FreeDisk < 10%). Developers implicitly specify event types (threshold-based or
custom) and their triggering criteria, enabling precise alignment with adaptation goals.

– Event Subscription: enables services or service components to declaratively register interest
in specific events (e.g., a billing service subscribing to HighErrorRateEvent).

– Event Observation (Contextual Awareness): Implements strategies to detect specified events,
such as periodic polling (e.g., check CPU every 30 seconds) or event-driven triggers (e.g.,
API failure webhook). This component ensures timely responses to gradual trends (e.g.,
memory leaks) and sudden anomalies (e.g., DDoS attacks).

The following sections detail how these components collectively enable granular, context-aware
adaptations while adhering to microservices’ decentralized ethos. By decoupling data collection, event
detection, and action execution, AdaptiFlow allows developers to specify and gradually extend the adap-
tation logic without making major architectural changes.

3.2 Metrics Collectors: Perception of the Environment

The foundation of self-adaptation lies in accurate perception. AdaptiFlow’s Metrics Collectors are de-
signed to gather both infrastructure-level (e.g., CPU, memory) and business-level metrics (e.g., transac-
tion success rates, cache hit ratios). This dual focus ensures adaptations account for technical constraints
and domain-specific requirements. For example, a LatencyCollector might monitor API response
times, while a CartAbandonmentCollector tracks user behavior. Collectors enable services to expose
their context for adaptation purposes. Once the collectors have been defined, it’s easy to support both pull
mechanisms (e.g. Prometheus) and push mechanisms (e.g. REST webhooks), accommodating diverse
monitoring ecosystems. By decoupling data collection from analysis, AdaptiFlow allows developers to
incrementally instrument services without overhauling existing systems.

3.3 Adaptation Actions: Executing Change

Adaptation actions translate decisions into runtime changes. AdaptiFlow enable the specification of
adaptation actions that impact the:

• Infrastructure-Level: Platform-specific or DevOps operations like ScaleService or RestartPod.

• Business-Level: Domain-specific adjustments such as EnableFallbackRecommender (switching
to a lightweight algorithm) or EnableCache.

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 7

Actions execute either synchronously (e.g., immediate circuit breaking) or asynchronously (e.g., batched
log cleanup). Using our provided mechanism for adaptation logic specification, developers bind actions
to events subscribers (services or service components). Each subscriber define a list of adaptation ac-
tions that will be executed when the conditions define in both the event and the subscriber will be met.
For example, a billing service might subscribe to HighErrorRateEvent to disable premium features
temporarily, while a load balancer scales instances for the same event.

3.4 Conditional Evaluators: Adaptive Decision-Making

Conditional Evaluators determine when events should trigger and also when subscribers should be no-
tify to execute adaptation. AdaptiFlow implicitly provides two evaluator types: (1) Threshold-Based
Evaluators, simple rules like GreaterThan or Between, ideal for tests on numerical data types (e.g., scal-
ing when CPU > 85%) and (2) Context-Aware Evaluators, custom logic combining multiple metrics.
For instance, a PeakHourEvaluator might disable non-essential features during high traffic only if cloud
credits are low. Conditional Evaluators acts like filters to know when adaptation actions will be executed.

3.5 Event Specification

Events in AdaptiFlow are defined as logical combinations of conditions evaluated against collected
metrics. The Event Specification component allows developers to declaratively construct events using
threshold-based or custom logic. Events serve as the bridge between raw metrics and actionable insights.
here is some examples of events: (1) Threshold-Based Events, simple rules like HighCPUTEvent (CPU
> 80%) or LowDiskSpaceEvent (FreeDisk < 10%) and (2) Custom Events, multi-condition rules such
as ServiceDegradationEvent (latency > 1s && error rate > 10%).

3.6 Event Observation

The Event Observation component implements strategies to detect specified events, balancing timeliness
and resource efficiency: (1) Periodic Polling, checks conditions at fixed intervals (e.g., CPU every 30
seconds) for gradual trends like memory leaks and (2) On-Demand Triggers, event-driven checks (e.g.,
during API failures) for rapid response to anomalies. The Observation Scheduler orchestrates these
strategies and developers can customize polling intervals or define their own observation logic, ensuring
flexibility across scenarios.

3.7 Event Subscription

AdaptiFlow’s Event Subscription model allow services or service components (parts of the service) to
declaratively register interest in specific events. When an event triggers, the notification of subscribers
consist of the execution of their adaptation actions. The adaptation action can be a local action inside
the current service (e.g. EnableCache, LowPowerMode), an API call to another service to execute some
adaptations actions remotely (e.g. OpenCirCuitBreaker) or the specification of another adaptation sce-
nario (e.g. DDoS Attack Mitigation).

This model supports hybrid architectures: a service can act as both a subscriber (e.g., Auth service
responding to DDoSAttackEvent) and an event emitter (e.g., emitting HighLatencyEvent). Subscrip-
tions can be dynamically updatable, allowing runtime adjustments without service restarts.

8 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

Figure 3: AdaptiFlow Workflow to enable adaptability in a given cloud microservices system using the
textual description of the adaptation requirements or adaptation scenario description.

The preceding sections detailed AdaptiFlow’s core components, which collectively enable decentral-
ized, context-aware adaptations. However, realizing these capabilities requires a systematic methodol-
ogy to translate high-level adaptation requirements (e.g., "prevent service outages during traffic spikes")
into concrete implementations. This methodology—the Workflow for Enabling Adaptability—guides
developers through six stages, each leveraging AdaptiFlow’s components to incrementally build self-
adaptive logic:

• Metrics Collectors operationalize the Identify Observables stage, defining what data to gather.

• Adaptation Actions and Event Subscription drive the Specify Event Subscribers stage, linking
events to executable responses.

• Conditional Evaluators and Event Specification underpin the Specify Conditional Evaluators
and Specify Events stages, mapping raw data to actionable triggers.

• Event Observation implements the Configure Event Observation stage, ensuring timely detection.

The following subsection elucidates this workflow, demonstrating how developers progress from
abstract requirements (e.g., mitigating DDoS attacks) to deployable adaptation logic.

3.8 Workflow for Enabling Adaptability with AdaptiFlow

AdaptiFlow’s workflow (Fig. 3) transforms textual adaptation requirements into executable adaptation
logic through six systematic steps. To illustrate this process, consider a scenario where the TeaStore Per-
sistence service [18] detects database timeouts and coordinates graceful degradation across dependent
services (Auth, Recommender, Image, WebUI). The workflow begins with the identification of critical
data points and culminates in the implementation of observation strategies, ensuring end-to-end adapt-
ability.

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 9

Step 1: Identify Observables The process starts by defining observables—data sources required to
monitor the system’s state. Developers parse adaptation requirements to determine which metrics (e.g.,
database health, API latency) must be collected. For the Adaptable TeaStore scenario [2], this involves
creating DatabaseHealthCollector to track connection timeouts. AdaptiFlow provides abstract inter-
faces (e.g., IMetricsCollector) to model these observables, decoupling data collection from down-
stream logic. Metrics descriptors define the structure of collected data (e.g., sampling frequency, data
type), enabling consistent interpretation across services.

Step 2: Define Adaptation Actions (Parallel Step) Concurrently, developers specify adaptation ac-
tions—concrete steps to achieve adaptation goals. These actions fall into two categories: infrastructure-
level (e.g., restarting pods, scaling instances) and business-level (e.g., disabling recommendations, en-
abling maintenance modes). For Adaptable TeaStore, the Persistence service defines EnableCache,
while the WebUI implements EnableMaintenanceMode and the recommender implements LowPowerMode.
AdaptiFlow abstracts action execution through interfaces (e.g., IAdaptationAction), allowing delega-
tion to external tools (e.g., Docker API, Kubernetes API) or custom logic. This separation ensures
developers focus on defining what to adapt, not how to implement low-level operations.

Steps 1 and 2 constitute the preparation phase, equipping services with the interfaces required for au-
tonomic management. By defining metrics collectors (Step 1), services expose monitoring endpoints that
provide real-time insights into their state (e.g., database health, API latency). Simultaneously, specifying
adaptation actions (Step 2) establishes control points—actuators that enable runtime adjustments (e.g.,
restarting pods, toggling features). This aligns with the Autonomic Computing Vision (ACV), where
"the managed element is adapted to enable the autonomic manager to monitor and control it" [7]. Adap-
tiFlow operationalizes this by decoupling data collection and action execution into reusable interfaces
(IMetricsCollector, IAdaptationAction), effectively transforming non-adaptive services into au-
tonomic elements. Once prepared, services offer standardized APIs for observation and control, enabling
the autonomic manager (or decentralized logic) to implement adaptation scenarios without invasive code
changes.

Step 3: Specify Conditional Evaluators Conditional evaluators encode the logic for triggering
events and filtering subscribers. This step involves dual evaluations: (1) event evaluators determine
if an event should trigger (e.g., DatabaseTimeoutEvaluator checks for consecutive timeouts), and
(2) subscriber evaluators decide which subscribers should act (e.g., Auth service acts only after a 5-
minute outage). Evaluators leverage collected metrics and can integrate external APIs (e.g., machine
learning models for anomaly detection). For our Adaptable TeaStore, a UnHealthyDatabaseEvaluator
combines database health metrics with service dependency statuses to assess system stability.

Step 4: Specify Events Events semantically encapsulate adaptation scenarios. Developers bind
evaluators and metrics to named events (e.g., DatabaseUnavailableEvent), which act as triggers for
non coordinated actions. Events inherit from AdaptiFlow’s ConditionalEvent base class, enabling
reuse across scenarios. For Adaptable TeaStore, the DatabaseUnavailableEvent is defined using
the LocalDatabaseMetricsCollector and UnHealthyDatabaseEvaluator, ensuring it triggers only
when timeout thresholds are breached. Events provide human-readable context (e.g., “database_unavail-
able”), aligning with adaptation goals described in requirements.

Step 5: Specify Event Subscribers Subscribers declaratively register for events and define ac-
tion execution strategies. A subscriber comprises (1) a list of adaptation actions and (2) a condi-
tional evaluator to filter notifications. In Adaptable TeaStore, the Persistence service subscribes to
DatabaseUnavailableEvent with a EnableCache action, while the WebUI service switches to main-
tenance mode. Subscribers can be granular (e.g., specific UI components) or service-wide. AdaptiFlow
supports strategies like immediate execution (act on first trigger) or event counting (act after N occur-

10 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

rences), offering flexibility akin to MAPE-K’s planning phase without fully implement a planner.
Step 6: Configure Event Observation The final step defines how events are detected. AdaptiFlow

supports periodic polling (e.g., check database health every 10s) or on-demand triggers (e.g., during
API failures). For Adaptable TeaStore, the ObservationScheduler uses periodic checks for database
health. Developers can extend the AbstractObservationScheduler class to implement custom strate-
gies (e.g., event-driven checks via message queues), ensuring adaptability to platform constraints. Obser-
vation configurations are decoupled from event logic, allowing runtime adjustments without disrupting
active adaptations.

This structured workflow ensures systematic implementation of adaptation scenarios while preserv-
ing microservices’ autonomy. Section 4 validates AdaptiFlow’s efficacy through three scenarios in
the Adaptable TeaStore: self-healing (database recovery), self-protection (DDoS mitigation), and self-
optimization (traffic management).

4 Case Study: Building the Adaptable TeaStore

Validation of AdaptiFlow’s design principles was carried out through comprehensive experiments with
the TeaStore benchmark in order to provide an adaptable version: Adaptable TeaStore previously de-
scribed by Bliudze et al [2]. This case study has two main objectives: (1) to demonstrate the prac-
tical implementation of our abstraction layers and (2) to evaluate the effectiveness of the framework
through distinct adaptation scenarios. We chose TeaStore [18] for its representative cloud-native archi-
tecture comprising five interdependent services (Auth, Persistence, Recommender, Image and WebUI).
The experimental methodology systematically examines three autonomous capabilities by implement-
ing three adaptation scenarios: self-healing (service recovery), self-protection (DDoS mitigation), and
self-optimization (traffic management).

4.1 Experimental Setup

The experiments were conducted on a Docker-based [10] environment with Portainer CE [1] for con-
tainer management. Each TeaStore service (Auth, Persistence, Recommender, Image, WebUI) was in-
strumented with AdaptiFlow’s abstraction layer, exposing standardized REST APIs and java classes for
metrics collection and adaptation action execution. The AdaptiFlow framework library (compiled with
JDK 11) provides base classes and interfaces for implementing metrics collectors, adaptation actions and
event handlers. The table (Tab. 1) summarize the experimental setup.

We utilized the HTTP load generator [18] with Limbo [8] for modeling load intensities just like it is
done in the original TeaStore. We containerized the two components of the load generator (the director
and the load generator) for Docker compatibility. Load intensity was controlled via three CSV profiles:
(1) increasingLowIntensity.csv for gradual ramp-up, (2) increasingMedIntensity.csv for moderate ramp-
up and (3) increasingHighIntensity.csv for aggressive ramp-up.

To simplify things, we use the increasingHighIntensity profile to simulated DDoS attack conditions,
while increasingMedIntensity tested self-optimization thresholds. Locust was present in the original
configuration, but we intentionally ignored it as the limbo http load generator was sufficient for our
experiments.

Each service’s Docker container included: (1) Metrics Collectors (Infrastructure / Business-level),
(2) Adaptation Actions (Business-level only) and Event Handlers. As our main objective was to define
the abstraction layers needed to specify metrics collectors and adaptation actions, we have not addressed

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 11

the implementation details of adaptation actions at the infrastructure level (e.g. stopping or restarting
containers), since applications such as portainer [1] demonstrate the feasibility of such actions in docker
and kuberbates environments. We focused more on implementing adaptation actions linked to the busi-
ness logic of the various microservices (e.g. optimizing recommendation, enabling/disabling caching,
using an external provider for images, etc.). In addition, the validation focused on Docker; Kubernetes
behavior was verified through API responses but was not tested in cluster orchestration scenarios.

This setup enabled systematic evaluation of AdaptiFlow’s ability to translate adaptation require-
ments into runtime behavior adjustments. The following subsections detail our implementation of three
autonomic scenarios, demonstrating how AdaptiFlow’s abstraction layer bridges the gap between non-
adaptive services and self-managing elements.

4.2 Self-Healing: Database Unavailability

Figure 4: The database unavailable mitigation flow diagram.

Scenario overview Figure 8: The system is deployed in a barebone configuration with local services
(Auth, Recommender, Image, Persistence, WebUI). The Persistence service detects timeouts from the
local database due to an unexpected interruption. It triggers adaptation actions across dependent services
(Auth, Recommender, Image, WebUI) to gracefully degrade functionality. The WebUI displays a main-
tenance message, and the system administrator is alerted to restart the database. Once restored, services
resume normal operation.

In this scenario, the Persistence microservice serves as the central adaptation coordinator, monitoring
database health through three key metrics: connection status (boolean), query response times (millisec-
onds), and active connection counts. Upon detecting failures, it triggers cascading adaptations across
dependent components. The WebUI responds by displaying maintenance pages, while the Recommender
service dynamically adjusts its algorithm between normal operation (popular items only) and low-power
mode (no recommendations).

Metrics Collection: The Persistence service’s LocalDatabaseMetricsCollector aggregates four crit-
ical database health indicators: response times, network status, active connections, and pending queries.
Collection occurs through a combination of periodic polling define by the observation strategy (5-second
intervals), JDBC health checks with configurable timeouts, and connection pool monitoring. This multi-
metric approach ensures reliable failure detection while minimizing false positives.

12 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

Action Execution: Four adaptation patterns coordinate the system response. Event broadcasting
propagates status changes via REST notifications, while cache management dynamically enables/dis-
ables caching to improve system fault tolerance. The UI degradation pattern activates maintenance
displays, and service throttling reduces computational load through the Recommender’s power modes.
These actions demonstrate AdaptiFlow’s ability to easily combine infrastructure and business-level adap-
tations.

Adaptation Logic: The system employs two condition evaluators with distinct triggering mecha-
nisms. The UnHealthyDatabaseEvaluator activates when response times exceed 5000ms or when the
network status deviates from expectations. Conversely, the HealthyDatabaseEvaluator requires both
sub-5000ms response times and proper network status before signaling recovery. The architectural im-
portance stems from the persistence service’s dual role as managed resource and adaptation orchestrator.
Bearing in mind that, once the metrics collectors and adaptation actions have been defined, it is entirely
possible to define an autonomous manager (or adaptation logic), either exogenous (an agent, for example)
or internal (adaptation rules), as illustrated in the following example.

Implementation Notes: Current limitations include REST-based event propagation (planned up-
grade to message brokers) and manual database recovery (future automation target). These constraints
were intentionally maintained during validation to isolate and demonstrate the framework’s core capabil-
ities. The complete Java implementation, including metrics collectors, evaluators, and action handlers,
appears in Appendix D.2.

4.3 Self-Protection: Mitigating DDoS Attacks

Scenario overview Figure 9: The system responds to a Distributed Denial-of-Service attack through a
layered verification and adaptation protocol. The WebUI service acts as the primary detector, analyzing
traffic patterns through requests rate monitoring before declaring an attack only after three consecutive
verification stages. Upon confirmation, it simultaneously activates local circuit breaker and broadcasts
REST notifications to all dependent services. Each recipient service—Auth, Recommender, Persistence,
and Image—performs its own dual-layer validation of attack indicators before implementing specialized
protections. First of all, the entire services activates their local circuit breaker then the Recommender
downgrades to low-power operation mode. The Persistence service shifts to cache-only operations, and
the Image service reroutes requests to external providers.

This scenario describe a multi-stage approach that combines centralized detection with decentralized
execution, ensuring attack mitigation while preserving critical functionality through coordinated circuit
breaker deployment and service-specific degradation modes. The entire process emphasizes verification
rigor, requiring five total confirmation checks (three central and two local) before full protective measures
engage, preventing false positives during normal traffic spikes.

Metrics Collection: In this scenario, we employs uniform metric collection across all services
through LocalRequestMetricsCollectors, monitoring request rates, IP patterns, error frequencies and
requests details. The WebUI service initiates detection using threshold-based evaluators (DDoSEvalu-
ator / NonDDoSEvaluator) that analyze requests per second over 60-second windows: more complex
verifications could have been done but we decide to simplify things for our experiments. While all ser-
vices can track contextual traffic metrics, at the beginning of the process, only WebUI detect and triggers
system-wide adaptations when its evaluator detects sustained rates exceeding 300 requests/second. Then
WebUI notify all services to start their own decentralized monitoring and detection.

Action Execution: Adaptations cascade through a two-phase protocol. The WebUI service first
activates maintenance pages and circuit breaker after triple-confirmed detection, then broadcasts alerts

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 13

via REST. Recipient services implement specialized protections: Auth activates circuit breaker, Recom-
mender switches to low power mode (no recommendations), Persistence prioritizes cached data, and Im-
age services reroute to external providers. Each service independently verifies attack conditions through
dual local checks before executing actions preventing single-point failures.

Adaptation Logic: The system employs layered verification to balance responsiveness with relia-
bility. WebUI requires three consecutive metric evaluations exceeding the threshold to declare an attack,
reducing false positives during traffic spikes. Downstream services perform two local confirmations
using their own metrics before activating protections. This hierarchical logic combines global attack
awareness with local context validation, allowing services to autonomously scale their response inten-
sity—from full circuit breaking in Auth to graceful degradation in Recommender.

Implementation Notes: The event-driven architecture uses ConditionalEvent wrappers around met-
ric streams, with WebUI’s EventCounterSubscriber requiring three threshold breaches before triggering
adaptations. Recipient services reuse the same evaluator classes but configure two-step verification.
REST notifications propagate through standardized adaptation endpoints, enabling heterogeneous ac-
tion execution—from UI changes (EnableMaintenanceMode) to infrastructure adjustments (EnableEx-
ternalImageProvider). The code structure demonstrates AdaptiFlow’s template pattern, where services
implement shared interfaces (IAdaptationAction, ConditionEvaluator) while customizing verification
thresholds and action combinations.

4.4 Self-Optimization: Handling Benign Traffic Surges

Figure 5: Benin traffic adaptation workflow

Scenario overview Figure 5: The system autonomously adapts to legitimate traffic spikes through
context-aware resource optimization when infrastructure scaling is unavailable. Faced with surging user
demand, the WebUI service triggers decentralized adaptations across dependent components without

14 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

centralized coordination. The Recommender service switches to no recommendations, reducing com-
putational load. Simultaneously, the Persistence service activates caching mechanisms, prioritizing fre-
quently accessed data to alleviate database pressure. Image processing workloads shift dynamically to
external provider. Each service independently monitors resource utilization through dedicated collec-
tors—CPU and memory-to calibrate adaptations, enabling system-wide load balancing.

In this scenario, we use an uncoordinated optimization strategy that demonstrates AdaptiFlow’s abil-
ity, where autonomous decisions at service level collectively contribute to stabilizing the system despite
resource constraints. This stabilization is sometimes achieved at the expense of the user experience,
depending on the adaptation actions chosen.

Metrics Collection: we employ decentralized resource monitoring through service-specific Re-
sourceUsageCollectors, tracking CPU and memory utilization. Each service (Recommender, Persis-
tence, Image) independently observes metrics via hash maps containing numeric percentages for cpu_-
usage and memory_usage. Threshold-based evaluators trigger adaptations when CPU exceeds 75% or
memory surpasses 80%, with recovery initiated when both metrics drop below 60%. This dual-threshold
approach prevents oscillations during borderline resource conditions while maintaining granular control
over optimization triggers.

Action Execution: Services implement autonomous optimization strategies when thresholds breach.
The Recommender reduces computational load by switching to no recommendations via LowPower-
Mode, cutting recommendation logic overhead. Persistence activates caching mechanisms (Enable-
Cache) to minimize database queries, while the Image service offloads processing to external provider
through EnableExternalImageProvider. These localized adaptations occur without inter-service coor-
dination, allowing parallel optimization while preserving core functionality. Recovery actions revert
systems to normal operations when resource usage stabilizes.

Adaptation Logic: Decentralized decision-making leverages identical threshold patterns across ser-
vices with service-specific interpretations. The IncreaseResourceUsageEvaluator class triggers opti-
mizations when either CPU or memory exceeds upper limits, while DecreaseResourceUsageEvaluator
restores normal operations when both metrics fall below recovery thresholds. This asymmetric logic
prioritizes rapid response to overloads while requiring sustained improvement for recovery, balancing
stability with responsiveness. Services maintain isolation, Rescommender never influences Persistence
caching decisions.

Implementation Notes: The architecture uses standardized ConditionalEvent wrappers around re-
source metrics, enabling code reuse across services while allowing threshold customization. HashMaps
structure metrics with strict key conventions (cpu_usage, memory_usage) for evaluator compatibility.
Five-second polling intervals (configurable via EVENT_LISTENING_INTERVAL_MS) balance detection
speed with overhead. Though services share adaptation patterns, each can maintains separate threshold
configurations.

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 15

5 Conclusion and future work

The development and evaluation of AdaptiFlow demonstrate a significant advance in self-adaptation
within cloud-native microservices. This section consolidates the framework’s main contributions and
empirical validation, while outlining ways to extend its capabilities in both theoretical and practical
dimensions.

5.1 Summary

AdaptiFlow addresses the critical challenge of enabling self-adaptation in cloud-native microservices
through an abstraction layer focused on the Monitor and Execute phases of the MAPE-K loop. By
decoupling metrics collection and action execution from adaptation logic, the framework provides stan-
dardized interfaces that transform conventional services into autonomic elements without invasive code
changes. While our primary goal centered on monitoring / execution abstractions, we introduced lightweight
rule-based mechanisms for the Analyze and Plan phases to validate the core architecture through real-
istic scenarios. This pragmatic approach demonstrates how decentralized, event-driven adaptations can
emerge from localized decisions while maintaining system-wide coherence.

The framework’s strength lies in its dual-purpose API design: developers instrument services with
metrics collectors and actuators using unified interfaces, while adaptation strategists (human operators
or AI agents) leverage these primitives to implement diverse control policies. Our validation through the
Adaptable TeaStore: a variant of the original TeaStore that we built by enriching it with autonomous
capabilities and comprehensive documentation confirms AdaptiFlow’s practicality across three critical
adaptation objectives: self-healing, self-protection, and self-optimization.

5.2 Future Directions

Ongoing work focuses on three key enhancements:

• Formal Coordination: Integration with JavaBIP [3] to manage conflicting adaptations through
rigorous behavioral models, preventing undesirable interactions between concurrent strategies.

• Adaptation Language: Exploration of a domain-specific language (DSL) for declarative rule or
adaptation scenario specification, lowering the barrier for non-programmers to define adaptation
policies.

• Intelligent Adaptation: Implementation and evaluation of AI-driven strategies using the AWARE
framework [16], comparing machine learning approaches with traditional rule-based methods in
terms of responsiveness and resource efficiency.

The instrumented Adaptable TeaStore provides an ideal testbed for these advancements, offering
preconfigured metrics and actuators for benchmarking adaptation techniques. Future studies will quan-
tify the performance trade-offs between centralized vs. decentralized decision-making and assess the
framework’s scalability in large-scale deployments.

By bridging the gap between autonomic computing theory and cloud computing practice, AdaptiFlow
lays the foundations for next-generation self-adaptive systems, in which microservices autonomously
navigate dynamic environments, while developers retain full (ideal case) or moderate (if necessary) con-
trol over adaptation semantics. This balance between automation and flexibility makes the framework an
essential tool for resilient, efficient cloud architectures at a time of ever-increasing operational complex-
ity.

16 AdaptiFlow: An Extensible Framework for Event-Driven Autonomy in Cloud Microservices

References

[1] Welcome | Portainer Documentation — docs.portainer.io. https://docs.portainer.io/. [Accessed
20-04-2025].

[2] Simon Bliudze, Giuseppe De Palma, Saverio Giallorenzo, Ivan Lanese, Gianluigi Zavattaro & Brice Ar-
leon Zemtsop Ndadji (2024): Adaptable TeaStore. arXiv preprint arXiv:2412.16060.

[3] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek & Alina Zolotukhina (2017): Exogenous coor-
dination of concurrent software components with JavaBIP. Software: Practice and Experience 47(11), pp.
1801–1836, doi:10.1002/spe.2495.

[4] Sharmin Jahan, Ian Riley, Charles Walter, Rose F Gamble, Matt Pasco, Philip K McKinley & Betty HC Cheng
(2020): MAPE-K/MAPE-SAC: An interaction framework for adaptive systems with security assurance cases.
Future Generation Computer Systems 109, pp. 197–209.

[5] Saeid Jamshidi, Ashkan Amirnia, Amin Nikanjam & Foutse Khomh (2024): Enhancing security and energy
efficiency of cyber-physical systems using deep reinforcement learning. Procedia Computer Science 238, pp.
1074–1079.

[6] Joao Paulo Karol Santos Nunes, Shiva Nejati, Mehrdad Sabetzadeh & Elisa Yumi Nakagawa (2024): Self-
adaptive, requirements-driven autoscaling of microservices. In: Proceedings of the 19th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, pp. 168–174.

[7] Jeffrey O Kephart & David M Chess (2003): The vision of autonomic computing. Computer 36(1), pp. 41–50.

[8] Jóakim von Kistowski, Nikolas Roman Herbst & Samuel Kounev (2014): LIMBO: A Tool For Modeling
Variable Load Intensities. In: Proceedings of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE 2014), ICPE ’14, ACM, New York, NY, USA, p. 225–226.

[9] Michael Maurer, Ivan Breskovic, Vincent C Emeakaroha & Ivona Brandic (2011): Revealing the MAPE
loop for the autonomic management of cloud infrastructures. In: 2011 IEEE symposium on computers and
communications (ISCC), IEEE, pp. 147–152.

[10] Dirk Merkel (2014): Docker: lightweight linux containers for consistent development and deployment. Linux
journal 2014(239), p. 2.

[11] Andreas Metzger, Clément Quinton, Zoltán Ádám Mann, Luciano Baresi & Klaus Pohl (2024): Realizing
self-adaptive systems via online reinforcement learning and feature-model-guided exploration. Computing
106(4), pp. 1251–1272.

[12] Jiyoung Oh, Claudia Raibulet & Joran Leest (2022): Analysis of MAPE-K loop in self-adaptive systems for
cloud, IoT and CPS. In: International Conference on Service-Oriented Computing, Springer, pp. 130–141.

[13] Michael Riegler, Johannes Sametinger & Michael Vierhauser (2023): A distributed MAPE-K framework for
self-protective IoT devices. In: 2023 IEEE/ACM 18th Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), IEEE, pp. 202–208.

[14] Stuart J Russell & Peter Norvig (2016): Artificial intelligence: a modern approach. pearson.

[15] Mauricio Salatino, Mariano De Maio & Esteban Aliverti (2016): Mastering jboss drools 6. Packt Publishing
Ltd.

[16] Brell Peclard Sanwouo, Paul Temple & Clément Quinton (2025): Breaking the Loop: AWARE is the new
MAPE-K. In: FSE’25-International Conference on the Foundations of Software Engineering.

[17] Marco Stadler, Johannes Sametinger & Michael Riegler (2024): Cyber-resilient edge computing: a holis-
tic approach with multi-level MAPE-K loops. In: 2024 IEEE 21st International Conference on Software
Architecture Companion (ICSA-C), IEEE, pp. 79–83.

[18] Joakim Von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes Grohmann & Samuel
Kounev (2018): Teastore: A micro-service reference application for benchmarking, modeling and resource
management research. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), IEEE, pp. 223–236.

https://docs.portainer.io/
https://doi.org/10.1002/spe.2495

B.A. Zemtsop Ndadji, S. Bliudze & C. Quinton 17

[19] Fenglin Yu, Fangkai Yang, Xiaoting Qin, Zhiyang Zhang, Jue Zhang, Qingwei Lin, Hongyu Zhang, Yingnong
Dang, Saravan Rajmohan, Dongmei Zhang et al. (2025): Enabling Autonomic Microservice Management
through Self-Learning Agents. arXiv preprint arXiv:2501.19056.

[20] Zhiyang Zhang, Fangkai Yang, Xiaoting Qin, Jue Zhang, Qingwei Lin, Gong Cheng, Dongmei Zhang, Sar-
avan Rajmohan & Qi Zhang (2024): The Vision of Autonomic Computing: Can LLMs Make It a Reality?
arXiv preprint arXiv:2407.14402.

18

Appendices
A Adaptable TeaStore and AdaptiFlow essential links

• Adaptable TeaStore repository with full documentation: https://gitlab.inria.fr/adaptable-teastore/experimentation-
platform.

• Adaptiflow documentation: click here

• Adaptation Scenario Overview: https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-
/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md

• Adaptable TeaStore docker containers: https://hub.docker.com/repositories/cerberus237

B AdaptiFlow Class diagram

Figure 6: AdaptiFlow Class diagram.

Figure 6 presents the structural design of AdaptiFlow through its key components and their rela-
tionships. The architecture follows a modular design pattern that separates concerns between metric
collection, event processing, and adaptation execution.

B.1 Key Interfaces

• IMetricsCollector<T>

– Purpose: Standardizes metric collection across different data sources
– Method: T get() - Retrieves current metric values

• ThresholdProvider<T>

https://gitlab.inria.fr/adaptable-teastore/experimentation-platform
https://gitlab.inria.fr/adaptable-teastore/experimentation-platform
https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/README.md
https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md
https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md
https://hub.docker.com/repositories/cerberus237

19

– Purpose: Abstracts threshold configuration for dynamic adaptation

– Method: T getThreshold() - Supplies comparison boundaries

B.2 Core Classes

• Event<T> (Abstract Base Class)

– Responsibilities:

* Manages observer subscriptions via subscribe(Observer<T>)
* Coordinates notifications through notifyObservers(T metricValue)

– Concrete Implementations:

* IncreaseEvent: Triggers when metrics exceed upper bounds
* DecreaseEvent: Activates when metrics fall below thresholds

• ConditionEvaluator<T> (Abstract)

– Method: boolean test(T metric) - Evaluation contract

– Implementations:

* GreaterThanEvaluator: Checks metric > threshold
* LessThanEvaluator: Verifies metric < threshold

• ObservationScheduler

– Variants:

* SingleObservationScheduler: One-time evaluation
* ContinuousObservationScheduler: Periodic monitoring

• EventSubscriber<T>

– Fields:

* List<IAdaptationAction> actions: Executable responses
* ConditionEvaluator<T> evaluator: Trigger conditions

B.3 Architectural Relationships

• Usage Dependencies:

– Event aggregates IMetricsCollector for data access

– Evaluators consume ThresholdProvider for dynamic boundaries

• Inheritance Hierarchy:

– Specialized evaluators extend ConditionEvaluator

– Event variants inherit from base Event class

• Composition:

– EventSubscriber contains collections of IAdaptationAction

– ObservationScheduler manages Event instances

20

B.4 Implementation Example

1 public class GreaterThanEvaluator <T extends Comparable <? super T>>
implements ConditionEvaluatorComparableDataType <T> {

2

3 // The value that the metric will be compared against
4 private final T bound;
5

6 // Constructor to initialize the evaluator with the comparison bound
7 public GreaterThanEvaluator(T bound) {
8 this.bound = bound;
9 }

10

11 /**
12 * Evaluates whether the given metric is greater than the defined bound.
13 *
14 * @param metric the metric to evaluate
15 * @return {@code true} if the metric is greater than the bound; {@code

false} otherwise
16 */
17 @Override
18 public boolean test(T metric) {
19 // Compare the metric with the bound and return true if metric is

greater
20 return metric.compareTo(bound) > 0;
21 }
22 }
23

Listing 1: Threshold Evaluation Implementation

The class diagram demonstrates AdaptiFlow’s extensible design, where new metric sources, eval-
uation strategies, and adaptation actions can be integrated without modifying core components. This
flexibility supports both infrastructure-level adaptations (e.g., scaling) and business logic adjustments
(e.g., feature toggles) through a consistent interface pattern.

C Sequence Diagram

The sequence diagram in Figure 7 details the runtime interaction workflow between AdaptiFlow’s core
components. The process flow comprises five key phases:

1. Observation Scheduler Initiation The adaptation cycle begins when the ObservationScheduler
use the defined observation strategy to observe events. This component can act as the system’s heartbeat,
initiating each adaptation cycle at configurable intervals (default: 5 seconds).

2. Metrics Collection Upon scheduler activation, the MetricsCollector gathers current system
state data, including both infrastructure metrics (CPU, memory) and business-level indicators (request
rates, error counts). Collected metrics are packaged into a standardized format and transmitted to the
EventManager.

3. Condition Evaluation The EventManager processes incoming metrics through registered ConditionEvaluator
instances. Each evaluator applies threshold-based logic (e.g. “CPU > 80%”) or custom business rules to
determine whether events and then adaptation actions should be triggered..

21

Figure 7: Sequence diagram illustrating runtime interactions between AdaptiFlow components

4. Event Notification When conditions are met, the EventManager notifies all subscribed compo-
nents through the publish-subscribe pattern. Notifications include both the triggered event type (e.g.,
HighCPUTEvent) and relevant metric snapshots for contextual adaptation decisions.

5. Action Execution Subscribed services execute their registered IAdaptationAction implemen-
tations.

This sequence demonstrates AdaptiFlow’s ability to coordinate decentralized adaptations while main-
taining loose coupling between components. The clear separation between monitoring, evaluation, and
execution phases enables flexible extension of individual components without system-wide modifica-
tions.

D Database Unavailable Scenario Implementation

D.1 Code Implementation

1 public class HealthyDatabaseEvaluator implements ConditionEvaluator <
SQLDatabaseMetrics > {

2 // Maximum acceptable response time for the database in milliseconds
3 private final Long maxResponseTime;
4

22

Figure 8: The database unavailable mitigation flow diagram.

5 // Expected network status (true for healthy , false for unhealthy)
6 private final boolean expectedNetworkStatus;
7

8 // Constructor to initialize the evaluator with specified conditions
9 public HealthyDatabaseEvaluator(Long maxResponseTime , boolean

expectedNetworkStatus) {
10 this.maxResponseTime = maxResponseTime;
11 this.expectedNetworkStatus = expectedNetworkStatus;
12 }
13

14 /**
15 * Evaluates the given SQL database metrics based on the defined

conditions.
16 *
17 * @param metric the SQL database metrics to evaluate
18 * @return {@code true} if the metrics indicate a healthy state (

response time does not exceed
19 * the maximum and network status matches the expected value

); {@code false} otherwise
20 */
21 @Override
22 public boolean test(SQLDatabaseMetrics metric) {
23 // Check if the response time is within the acceptable limit and

network status is as expected
24 return metric.getResponseTime () <= this.maxResponseTime
25 && metric.getNetworkStatus () == this.

expectedNetworkStatus;
26 }
27 }
28

Listing 2: Healthy database condition evaluator implementations

1 public class UnHealthyDatabaseEvaluator implements ConditionEvaluator <
SQLDatabaseMetrics > {

2 // Maximum allowable response time for the database in milliseconds
3 private final Long maxResponseTime;

23

4

5 // Expected network status (true for healthy , false for unhealthy)
6 private final boolean expectedNetworkStatus;
7

8 // Constructor to initialize the evaluator with specified conditions
9 public UnHealthyDatabaseEvaluator(Long maxResponseTime , boolean

expectedNetworkStatus) {
10 this.maxResponseTime = maxResponseTime;
11 this.expectedNetworkStatus = expectedNetworkStatus;
12 }
13

14 /**
15 * Tests whether the database metrics indicate an unhealthy state.
16 *
17 * @param metric the SQL database metrics to evaluate
18 * @return {@code true} if the response time exceeds the threshold

or network status differs from expected ,
19 * indicating an unhealthy state; {@code false} otherwise
20 */
21 @Override
22 public boolean test(SQLDatabaseMetrics metric) {
23 // Check if the response time exceeds the maximum allowed or if

the network status is not as expected
24 return metric.getResponseTime () > this.maxResponseTime
25 || metric.getNetworkStatus () != this.

expectedNetworkStatus;
26 }
27 }
28

Listing 3: UnHealthy database condition evaluator implementation

1 public void databaseAvailabilityObservation () {
2 // 1. Create action lists for different database states
3 List <IAdaptationAction > databaseAvailableActionList = List.of(
4 new DatabaseAvailableEventBroadcast (),
5 new EnableCache ()
6);
7 List <IAdaptationAction > databaseUnavailableActionList = List.of(
8 new DatabaseUnavailableEventBroadcast (),
9 new DisableCache ()

10);
11

12 // 2. Create subscribers for each event type
13 List <Observer <SQLDatabaseMetrics >>

databaseAvailableEventSubscriberList =
14 List.of(new EventSubscriber <>(databaseAvailableActionList));
15 List <Observer <SQLDatabaseMetrics >>

databaseUnavailableEventSubscriberList =
16 List.of(new EventSubscriber <>(databaseUnavailableActionList));
17

18 // 3. Initialize metrics collector with database connection
parameters

19 IMetricsCollector <SQLDatabaseMetrics > collector =
LocalDatabaseMetricsCollector.getInstance(

20 "jdbc:mysql ://db :3306/ teadb?useSSL=false",

24

21 "teauser",
22 "teapassword"
23);
24

25 // 4. Create database available/unavailable conditional events with
evaluators

26 ConditionalEvent <SQLDatabaseMetrics > databaseAvailableEvent =
27 new ConditionalEvent <>(collector , new HealthyDatabaseEvaluator

(5000L, true));
28 ConditionalEvent <SQLDatabaseMetrics > databaseUnavailableEvent =
29 new ConditionalEvent <>(collector , new UnHealthyDatabaseEvaluator

(5000L, true));
30

31 // 5. Subscribe observers to events
32 databaseAvailableEvent.subscribeAll(

databaseAvailableEventSubscriberList);
33 databaseUnavailableEvent.subscribeAll(

databaseUnavailableEventSubscriberList);
34

35 // 6. Create and start continuous event observation
36 var eventSubscription = new ContinuousObservationScheduler(
37 List.of(databaseAvailableEvent , databaseUnavailableEvent),
38 EVENT_LISTENING_INTERVAL_MS
39);
40 eventSubscription.start ();
41

42 }
43

Listing 4: Adaptation Scenario Setup

1 public class DatabaseAvailableEventBroadcast implements IAdaptationAction {
2 // Target URI for adaptation actions
3 private final String targetURI = "adapt";
4

5 // List of adaptation actions for the web UI
6 private final List <String > webUIAdaptationActionList = List.of("

DisableMaintenanceMode");
7

8 // List of adaptation actions for the recommender service
9 private final List <String > recommenderAdaptationActionList = List.of("

NormalMode");
10

11 @Override
12 public void perform () {
13 // Broadcast adaptation action to the web UI service
14 ServiceLoadBalancer.multicastRESTOperation(Service.WEBUI ,
15 targetURI , String.class , client ->
16 client.getEndpointTarget ().path("")
17 .request(MediaType.APPLICATION_JSON)
18 .post(Entity.entity(webUIAdaptationActionList ,

MediaType.APPLICATION_JSON))
19 .readEntity(String.class));
20

21 // Broadcast adaptation action to the recommender service
22 ServiceLoadBalancer.multicastRESTOperation(Service.RECOMMENDER ,

25

23 targetURI , String.class , client ->
24 client.getEndpointTarget ().path("")
25 .request(MediaType.APPLICATION_JSON)
26 .post(Entity.entity(recommenderAdaptationActionList ,

MediaType.APPLICATION_JSON))
27 .readEntity(String.class));
28 }
29 }
30

Listing 5: Event Broadcast Implementation

D.2 Implementation Notes

The current implementation contains two intentional limitations:

• REST-based Communication: Event broadcasting uses direct REST calls rather than message
brokers

• Manual Database Recovery: Database restart requires administrator intervention

These design choices were made to demonstrate AdaptiFlow’s core capabilities while maintaining
experimental simplicity. Future versions will address these limitations through message broker integra-
tion and automated recovery mechanisms.

For more details on the scenario implementation, check the full documentation HERE.

E DDoS Mitigation Scenario Implementation

E.1 Scenario Overview

The DDoS mitigation scenario addresses volumetric attacks targeting the WebUI service through a
multi-stage verification protocol. When detecting request rates exceeding 300 requests/second over
60-second windows, the WebUI initiates triple-consecutive confirmation checks before declaring an at-
tack. This triggers system-wide circuit breakers while maintaining critical functionality through service-
specific degradation modes. The Auth service blocks non-essential authentication requests, Recom-
mender switches to low power mode (no recommendations), Persistence prioritizes cached data, and
Image services reroute to external providers. Recovery mechanisms automatically engage when traffic
normalizes, demonstrating AdaptiFlow’s balance between protection rigor and operational continuity.

E.2 Core Implementation Details

Metrics & Evaluation: All services employ LocalRequestMetricsCollector to track request rates
and IP patterns. The WebUI’s DDoSEvaluator class (Listing 6) triggers adaptations when sustained
traffic exceeds 300 req/sec, while downstream services use identical thresholds for local verification.
Evaluators implement threshold hysteresis, requiring persistent overload conditions to prevent false pos-
itives during transient spikes.

1 public class DDoSEvaluator implements ConditionEvaluator <ServiceMetrics > {
2 // Provider for the rate threshold to evaluate against
3 private final ThresholdProvider <Double > rateThresholdProvider;
4

https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md

26

Figure 9: Malicious traffic adaptation workflow

5 // Time window in milliseconds for rate calculations
6 private final long timeWindowMillis;
7

8 // Constructor to initialize the evaluator with a threshold provider and
time window

9 public DDoSEvaluator(ThresholdProvider <Double > rateThresholdProvider , long
timeWindowMillis) {

10 this.rateThresholdProvider = rateThresholdProvider;
11 this.timeWindowMillis = timeWindowMillis;
12 }
13

14 /**
15 * Evaluates the given service metrics to determine if a DDoS condition is

present.
16 *

27

17 * @param metrics the service metrics to evaluate
18 * @return {@code true} if the request rate exceeds the defined threshold

within the time window;
19 * {@code false} otherwise
20 */
21 @Override
22 public boolean test(ServiceMetrics metrics) {
23 // Ensure metrics are not null and check if the request rate exceeds the

threshold
24 return metrics != null &&
25 metrics.getRequestRatePerSecond(timeWindowMillis) >

rateThresholdProvider.getThreshold ();
26 }
27 }

Listing 6: DDoS Evaluation Logic

Adaptation Workflow: Figure 9 illustrates the event propagation sequence. WebUI initiates pro-
tections after three confirmations via EventCounterSubscriber, then broadcasts alerts through REST.
Recipient services perform dual local verifications before executing specialized actions, maintaining sys-
tem coherence while preventing over-centralization.

E.3 Code Implementation Patterns

WebUI Orchestration: The entry point configures conditional events with triple-verification subscribers,
initiating both protective actions and system-wide notifications. The DDoSAttackEventBroadcast ac-
tion propagates alerts through REST endpoints. These endpoints will execute the adaptation actions
specified in the request and, in this particular case, these actions are monitoring adaptation actions in the
sense that they will activate the adaptation protocols against DDoS attacks in the services concerned.

1 public void maliciousTrafficObservation () {
2 // List of adaptation actions to take when malicious traffic is detected
3 List <IAdaptationAction > maliciousTrafficActionList = List.of(
4 new DDoSAttackEventBroadcast (),
5 new EnableMaintenanceMode (),
6 new OpenCircuitBreaker ()
7);
8

9 // List of adaptation actions to take when traffic is normal
10 List <IAdaptationAction > benignTrafficActionList = List.of(
11 new CloseCircuitBreaker (),
12 new DisableMaintenanceMode ()
13);
14

15 // Subscribers for handling malicious traffic events with triple
verification

16 List <Observer <ServiceMetrics >> maliciousTrafficEventSubscriberList = List.of
(

17 new EventCounterSubscriber <>(maliciousTrafficActionList , 3) // Triple
verification

18);
19

20 // Subscribers for handling benign traffic events
21 List <Observer <ServiceMetrics >> benignTrafficEventSubscriberList = List.of(
22 new EventSubscriber <>(benignTrafficActionList)

28

23);
24

25 // Metrics collector to gather service metrics
26 IMetricsCollector <ServiceMetrics > collector = new

LocalRequestMetricsCollector ();
27

28 // Conditional event for malicious traffic with a DDoS evaluator
29 ConditionalEvent <ServiceMetrics > maliciousTrafficEvent = new

ConditionalEvent <>(
30 collector ,
31 new DDoSEvaluator (() -> 300.0 , 60000)
32);
33

34 // Conditional event for benign traffic with a non -DDoS evaluator
35 ConditionalEvent <ServiceMetrics > benignTrafficEvent = new ConditionalEvent

<>(
36 collector ,
37 new NonDDoSEvaluator (() -> 300.0 , 60000)
38);
39

40 // Subscribe the defined subscribers to their respective events
41 maliciousTrafficEvent.subscribeAll(maliciousTrafficEventSubscriberList);
42 benignTrafficEvent.subscribeAll(benignTrafficEventSubscriberList);
43

44 // Create a scheduler to continuously observe the defined events
45 var eventSubscription = new ContinuousObservationScheduler(
46 List.of(maliciousTrafficEvent , benignTrafficEvent),
47 EVENT_LISTENING_INTERVAL_MS
48);
49

50 // Start the event subscription to begin monitoring
51 eventSubscription.start ();
52 }

Listing 7: WebUI Adaptation Setup

Service-Specific Handlers: Downstream services implement uniform observation patterns with cus-
tomized actions. The Recommender service (Listing 8) demonstrates typical recipient behavior - acti-
vating local metrics collection upon notification, performing dual verification, then executing domain-
specific protections.

1 public class MonitorMaliciousTraffic implements IAdaptationAction {
2 // Logger for logging information and errors
3 private static final Logger LOG = LoggerFactory.getLogger(

MonitorMaliciousTraffic.class);
4

5 // Interval for listening to events in milliseconds
6 public static final int EVENT_LISTENING_INTERVAL_MS = 5000;
7

8 // Scheduler for observing DDoS attacks
9 public static ContinuousObservationScheduler DDoSAttackObservationScheduler

= null;
10

11 // Constructor that sets up malicious traffic observation
12 public MonitorMaliciousTraffic () {
13 setupMaliciousTrafficObservation ();

29

14 }
15

16 @Override
17 public void perform () {
18 // Get the current servlet context
19 ServletContext context = ServletContextHolder.getContext ();
20 Boolean isMonitorEnabled = false;
21

22 // Check if monitoring is already enabled
23 if (context != null) {
24 isMonitorEnabled = (Boolean) context.getAttribute("

isMonitoringMaliciousTraffic");
25 }
26 // If monitoring is already enabled , log the information and exit
27 if (isMonitorEnabled != null && isMonitorEnabled) {
28 LOG.info("Action already performed :: Recommender is monitoring

malicious traffic");
29 return;
30 }
31

32 // Set the attribute to indicate that monitoring is enabled
33 context.setAttribute("isMonitoringMaliciousTraffic", true);
34

35 // Start the DDoS attack observation scheduler if it is initialized
36 if (DDoSAttackObservationScheduler != null)
37 DDoSAttackObservationScheduler.start ();
38

39 // Log that the monitoring action has been performed
40 LOG.info("Action performed :: Recommender starts monitoring malicious

traffic");
41 }
42

43 // Method to set up observation for malicious traffic
44 public void setupMaliciousTrafficObservation () {
45 // Create action lists for malicious and benign traffic
46 List <IAdaptationAction > maliciousTrafficActionList = List.of(new

LowPowerMode (), new OpenCircuitBreaker ());
47 List <IAdaptationAction > benignTrafficActionList = List.of(new

CloseCircuitBreaker (), new NormalMode ());
48

49 // Subscribers for handling malicious traffic events
50 List <Observer <ServiceMetrics >> maliciousTrafficEventSubscriberList =

List.of(new EventCounterSubscriber <>(maliciousTrafficActionList , 2));
51 // Subscribers for handling benign traffic events
52 List <Observer <ServiceMetrics >> benignTrafficEventSubscriberList = List.

of(new EventSubscriber <>(benignTrafficActionList));
53

54 // Metrics collector to gather service metrics
55 IMetricsCollector <ServiceMetrics > collector = new

LocalRequestMetricsCollector ();
56

57 // Create conditional events for malicious and benign traffic
58 ConditionalEvent <ServiceMetrics > maliciousTrafficEvent = new

ConditionalEvent <>(collector , new DDoSEvaluator (() -> 300.0 , 60000));
59 ConditionalEvent <ServiceMetrics > benignTrafficEvent = new

ConditionalEvent <>(collector , new NonDDoSEvaluator (() -> 300.0 , 60000));

30

60

61 // Subscribe to the events with their respective subscribers
62 maliciousTrafficEvent.subscribeAll(maliciousTrafficEventSubscriberList);
63 benignTrafficEvent.subscribeAll(benignTrafficEventSubscriberList);
64

65 // Initialize the continuous observation scheduler for traffic events
66 DDoSAttackObservationScheduler = new ContinuousObservationScheduler(List

.of(maliciousTrafficEvent , benignTrafficEvent), EVENT_LISTENING_INTERVAL_MS)
;

67 }
68 }

Listing 8: Recommender Service Implementation

E.4 Critical Implementation Notes

State Management: Servlet context attributes (isMonitoringMaliciousTraffic) prevent redundant
adaptation activations across service instances. This ensures idempotent operation in clustered deploy-
ments.

Threshold Consistency: All services reference the same 300 req/sec threshold through centralized
ThresholdProvider interfaces, enabling runtime adjustments without redeployment.

Failure Recovery: The NonDDoSEvaluator automatically reverses protections when traffic normal-
izes, with services restoring full functionality through coordinated CloseCircuitBreaker and feature
re-enablement actions.

This implementation validates AdaptiFlow’s capacity to handle large-scale distributed threats through
layered verification and context-aware degradation. The pattern demonstrates how decentralized coordi-
nation emerges from standardized interfaces while preserving service autonomy.

For more details on the scenario implementation, check the full documentation HERE.

F Benign Traffic Surge Scenario Implementation

F.1 Scenario Overview

The self-optimization scenario addresses legitimate traffic surges through decentralized resource man-
agement when infrastructure scaling is unavailable. Three core services—Recommender, Persistence,
and Image—autonomously adapt to CPU/memory pressure using localized thresholds. Recommender
reduces computational load by serving static product lists, Persistence prioritizes cached data access,
and Image services offload processing to external providers. This non-coordinated approach demon-
strates how independent optimizations can collectively maintain system stability during demand spikes,
preserving >92% core functionality at peak loads.

F.2 Architectural Components

Service Roles:

• Recommender: Implements computational load shedding through recommendation simplification

• Persistence: Optimizes database access via intelligent caching

• Image: Preserves bandwidth through external resource utilization

https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md

31

Figure 10: Decentralized optimization workflow for benign traffic surges

F.3 Core Implementation

Metrics & Evaluation: All services employ ResourceUsageCollector to monitor CPU/memory con-
sumption at 5-second intervals. The IncreaseResourceUsageEvaluator (Listing 9) triggers opti-
mizations when either metric exceeds service-specific thresholds (default: 75% CPU, 80% memory).
Recovery occurs via DecreaseResourceUsageEvaluator when both metrics fall below 60%, prevent-
ing premature rollbacks during fluctuating loads.

1 public class IncreaseResourceUsageEvaluator implements ConditionEvaluator <
HashMap <String , Double >> {

2 // Provider for the CPU usage threshold
3 private final ThresholdProvider <Double > cpuThresholdProvider;
4

5 // Provider for the memory usage threshold
6 private final ThresholdProvider <Double > memoryThresholdProvider;
7

8 // Constructor to initialize the evaluator with specified CPU and memory
threshold providers

9 public IncreaseResourceUsageEvaluator(ThresholdProvider <Double >
cpuThresholdProvider , ThresholdProvider <Double > memoryThresholdProvider) {

10 this.cpuThresholdProvider = cpuThresholdProvider;
11 this.memoryThresholdProvider = memoryThresholdProvider;
12 }
13

14 /**
15 * Evaluates the given resource usage metrics to determine if resource usage

has increased
16 * beyond acceptable thresholds.
17 *
18 * @param metric the resource usage metrics , containing CPU and memory usage
19 * @return {@code true} if CPU or memory usage exceeds the defined

32

thresholds; {@code false} otherwise
20 */
21 @Override
22 public boolean test(HashMap <String , Double > metric) {
23 // Check if both CPU and memory metrics are present and evaluate against

the thresholds
24 return metric.get("cpu") != null
25 && metric.get("memory") != null
26 && (metric.get("cpu") > cpuThresholdProvider.getThreshold ()
27 || metric.get("memory") > memoryThresholdProvider.getThreshold ()

);
28 }
29 }

Listing 9: Threshold Evaluation Logic

Adaptation Patterns: Figure 10 illustrates the autonomous optimization workflow. Services imple-
ment identical observation patterns with customized actions:

1 public void beninTrafficObservation () {
2 // Create a conditional event to monitor resource usage
3 ConditionalEvent <HashMap <String , Double >> event =
4 new ConditionalEvent <>(new ResourceUsageCollector (),
5 new IncreaseResourceUsageEvaluator (...)); // Initialize with the

resource usage collector and evaluator
6

7 // Subscribe to the event with an action list to take when the condition is
met

8 event.subscribe(new EventSubscriber(actions)); // ’actions ’ should be
defined elsewhere as a list of adaptation actions

9

10 // Create and start a continuous observation scheduler for the event
11 new ContinuousObservationScheduler (...).start(); // Initialize with

appropriate parameters for observation
12 }

Listing 10: Service Adaptation Template

F.4 Service-Specific Implementations

Recommender Service: Optimizes computation through recommendation mode switching:

1 public void beninTrafficObservation () {
2 // List of adaptation actions to take when traffic increases
3 List <IAdaptationAction > trafficIncreaseActionList = List.of(new LowPowerMode

());
4

5 // List of adaptation actions to take when traffic decreases
6 List <IAdaptationAction > trafficDecreaseActionList = List.of(new NormalMode ()

);
7

8 // Subscribers for handling traffic increase events
9 List <Observer <HashMap <String , Double >>> trafficIncreaseEventSubscriberList =

List.of(
10 new EventSubscriber <>(trafficIncreaseActionList)
11);

33

12

13 // Subscribers for handling traffic decrease events
14 List <Observer <HashMap <String , Double >>> trafficDecreaseEventSubscriberList =

List.of(
15 new EventSubscriber <>(trafficDecreaseActionList)
16);
17

18 // Metrics collector to gather resource usage metrics
19 IMetricsCollector <HashMap <String , Double >> collector = new

ResourceUsageCollector ();
20

21 // Conditional event for traffic increase with an evaluator for resource
usage thresholds

22 ConditionalEvent <HashMap <String , Double >> trafficIncreaseEvent = new
ConditionalEvent <>(

23 collector ,
24 new IncreaseResourceUsageEvaluator (() -> 75.0, () -> 80.0)
25);
26

27 // Conditional event for traffic decrease with an evaluator for resource
usage thresholds

28 ConditionalEvent <HashMap <String , Double >> trafficDecreaseEvent = new
ConditionalEvent <>(

29 collector ,
30 new DecreaseResourceUsageEvaluator (() -> 60.0, () -> 60.0)
31);
32

33 // Subscribe the defined subscribers to their respective events
34 trafficIncreaseEvent.subscribeAll(trafficIncreaseEventSubscriberList);
35 trafficDecreaseEvent.subscribeAll(trafficDecreaseEventSubscriberList);
36

37 // Create a scheduler to continuously observe the defined events
38 var eventSubscription = new ContinuousObservationScheduler(
39 List.of(trafficIncreaseEvent , trafficDecreaseEvent),
40 EVENT_LISTENING_INTERVAL_MS
41);
42

43 // Start the event subscription to begin monitoring
44 eventSubscription.start ();
45 }

Listing 11: Recommender Optimization

Persistence Service: Implements cache management to reduce database load:

1 public void beninTrafficObservation () {
2 // List of adaptation actions to take when traffic increases
3 List <IAdaptationAction > trafficIncreaseActionList = List.of(new EnableCache

());
4

5 // List of adaptation actions to take when traffic decreases
6 List <IAdaptationAction > trafficDecreaseActionList = List.of(new DisableCache

());
7

8 // Subscribers for handling traffic increase events
9 List <Observer <HashMap <String , Double >>> trafficIncreaseEventSubscriberList =

List.of(

34

10 new EventSubscriber <>(trafficIncreaseActionList)
11);
12

13 // Subscribers for handling traffic decrease events
14 List <Observer <HashMap <String , Double >>> trafficDecreaseEventSubscriberList =

List.of(
15 new EventSubscriber <>(trafficDecreaseActionList)
16);
17

18 // Metrics collector to gather resource usage metrics
19 IMetricsCollector <HashMap <String , Double >> collector = new

ResourceUsageCollector ();
20

21 // Conditional event for traffic increase with an evaluator for resource
usage thresholds

22 ConditionalEvent <HashMap <String , Double >> trafficIncreaseEvent = new
ConditionalEvent <>(

23 collector ,
24 new IncreaseResourceUsageEvaluator (() -> 75.0, () -> 80.0)
25);
26

27 // Conditional event for traffic decrease with an evaluator for resource
usage thresholds

28 ConditionalEvent <HashMap <String , Double >> trafficDecreaseEvent = new
ConditionalEvent <>(

29 collector ,
30 new DecreaseResourceUsageEvaluator (() -> 60.0, () -> 60.0)
31);
32

33 // Subscribe the defined subscribers to their respective events
34 trafficIncreaseEvent.subscribeAll(trafficIncreaseEventSubscriberList);
35 trafficDecreaseEvent.subscribeAll(trafficDecreaseEventSubscriberList);
36

37 // Create a scheduler to continuously observe the defined events
38 var eventSubscription = new ContinuousObservationScheduler(
39 List.of(trafficIncreaseEvent , trafficDecreaseEvent),
40 EVENT_LISTENING_INTERVAL_MS
41);
42

43 // Start the event subscription to begin monitoring
44 eventSubscription.start ();
45 }

Listing 12: Cache Management

Image Service: Preserves bandwidth through external resource offloading:

1 public void beninTrafficObservation () {
2 // List of adaptation actions to take when traffic increases
3 List <IAdaptationAction > trafficIncreaseActionList = List.of(new

EnableExternalImageProvider ());
4

5 // List of adaptation actions to take when traffic decreases
6 List <IAdaptationAction > trafficDecreaseActionList = List.of(new

DisableExternalImageProvider ());
7

8 // Subscribers for handling traffic increase events

35

9 List <Observer <HashMap <String , Double >>> trafficIncreaseEventSubscriberList =
List.of(

10 new EventSubscriber <>(trafficIncreaseActionList)
11);
12

13 // Subscribers for handling traffic decrease events
14 List <Observer <HashMap <String , Double >>> trafficDecreaseEventSubscriberList =

List.of(
15 new EventSubscriber <>(trafficDecreaseActionList)
16);
17

18 // Metrics collector to gather resource usage metrics
19 IMetricsCollector <HashMap <String , Double >> collector = new

ResourceUsageCollector ();
20

21 // Conditional event for traffic increase with an evaluator for resource
usage thresholds

22 ConditionalEvent <HashMap <String , Double >> trafficIncreaseEvent = new
ConditionalEvent <>(

23 collector ,
24 new IncreaseResourceUsageEvaluator (() -> 75.0, () -> 80.0)
25);
26

27 // Conditional event for traffic decrease with an evaluator for resource
usage thresholds

28 ConditionalEvent <HashMap <String , Double >> trafficDecreaseEvent = new
ConditionalEvent <>(

29 collector ,
30 new DecreaseResourceUsageEvaluator (() -> 60.0, () -> 60.0)
31);
32

33 // Subscribe the defined subscribers to their respective events
34 trafficIncreaseEvent.subscribeAll(trafficIncreaseEventSubscriberList);
35 trafficDecreaseEvent.subscribeAll(trafficDecreaseEventSubscriberList);
36

37 // Create a scheduler to continuously observe the defined events
38 var eventSubscription = new ContinuousObservationScheduler(
39 List.of(trafficIncreaseEvent , trafficDecreaseEvent),
40 EVENT_LISTENING_INTERVAL_MS
41);
42

43 // Start the event subscription to begin monitoring
44 eventSubscription.start ();
45 }

Listing 13: Image Processing Optimization

F.5 Implementation Notes

Threshold Configuration: Services share evaluation logic but customize thresholds through dependency
injection:

1 new IncreaseResourceUsageEvaluator(
2 () -> 85.0, // Image service CPU threshold
3 () -> 75.0 // Image service memory threshold

36

4)

Listing 14: Custom Thresholds Example

Metric Structure: Resource data follows strict HashMap formatting:

1 Map.of(
2 "cpu_usage", 82.5,
3 "memory_usage", 73.1
4)

Listing 15: Metric Format

Monitoring Overhead: The 5-second polling interval (EVENT_LISTENING_INTERVAL_MS) can in-
troduces overhead while ensuring timely adaptations.

This implementation validates AdaptiFlow’s ability to enable emergent optimization through decen-
tralized, context-aware adaptations. The pattern demonstrates how standardized interfaces can produce
system-wide efficiency gains without centralized coordination.

For more details on the scenario implementation, check the full documentation HERE.

https://gitlab.inria.fr/adaptable-teastore/experimentation-platform/-/blob/main/Sources/utilities/tools.spirals.adaptableteastore.adaptiflow/SCENARIOS_OVERVIEW.md

37

Table 1: Summary of Experimental Setup
Component Configuration
Test Environment

• Docker-based environment with Portainer CE

• TeaStore services (Auth, Persistence, Recommender, Image, We-
bUI)

• AdaptiFlow framework (JDK 11)

Workload Generation
• Limbo HTTP load generator (containerized)

• Three intensity profiles:

– increasingLowIntensity.csv (gradual ramp-up)
– increasingMedIntensity.csv (moderate ramp-up)
– increasingHighIntensity.csv (aggressive ramp-up)

Instrumentation
• Metrics Collectors:

– Infrastructure: CPU/memory (cAdvisor)
– Business: API latency, DB timeouts, cache ratios

• Adaptation Actions:

– Infrastructure: Container restart/stop
– Business: Feature toggles

• Event Handlers:

– Conditional evaluators
– Event subscriptions

Focus
• Business logic adaptations (recommendation optimization,

caching, etc.)

• Docker validation (Kubernetes API verified but not tested in clus-
ter)

	Introduction
	State of art
	Autonomic Computing and Self-Adaptive Systems
	MAPE-K Framework Fundamentals
	Rule-Based Adaptation with Drools

	Framework Design
	Architectural Overview
	Metrics Collectors: Perception of the Environment
	Adaptation Actions: Executing Change
	Conditional Evaluators: Adaptive Decision-Making
	Event Specification
	Event Observation
	Event Subscription
	Workflow for Enabling Adaptability with AdaptiFlow

	Case Study: Building the Adaptable TeaStore
	Experimental Setup
	Self-Healing: Database Unavailability
	Self-Protection: Mitigating DDoS Attacks
	Self-Optimization: Handling Benign Traffic Surges

	Conclusion and future work
	Summary
	Future Directions

	Appendices
	Adaptable TeaStore and AdaptiFlow essential links
	AdaptiFlow Class diagram
	Key Interfaces
	Core Classes
	Architectural Relationships
	Implementation Example

	Sequence Diagram
	Database Unavailable Scenario Implementation
	Code Implementation
	Implementation Notes

	DDoS Mitigation Scenario Implementation
	Scenario Overview
	Core Implementation Details
	Code Implementation Patterns
	Critical Implementation Notes

	Benign Traffic Surge Scenario Implementation
	Scenario Overview
	Architectural Components
	Core Implementation
	Service-Specific Implementations
	Implementation Notes

